Spatial Variability of Glaciochemistry along a Transect from Zhongshan Station to LGB69, Antarctica
Abstract
1. Introduction
2. Sampling and Laboratory Analysis
2.1. Sample Collection
2.2. Sample Analysis
3. Results and Discussion
3.1. Spatial Variability of Ionic Compositions
3.1.1. Sea-Salt Ions
3.1.2. Non-Sea-Salt Ions
3.2. Spatial Variability of Isotopic Compositions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delmas, R.J. Environmental information from ice cores. Rev. Geophys. 1992, 30, 1–21. [Google Scholar] [CrossRef]
- Wolff, E.W.; Rankin, A.M.; Röthlisberger, R. An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett. 2003, 30, 2158. [Google Scholar] [CrossRef]
- Abram, N.J.; Mulvaney, R.; Wolff, E.W.; Mudelsee, M. Ice core records as sea ice proxies: An evaluation from the Weddell Searegion of Antarctica. J. Geophys. Res. Atmos. 2007, 112, D15101. [Google Scholar] [CrossRef]
- Becagli, S.; Benassai, S.; Castellano, E.; Largiuni, O.; Migliori, A.; Traversi, R.; Flora, O.; Udisti, R. Chemical characterization of the last 250 years of snow deposition at Talos Dome (East Antarctica). Int. J. Environ. Anal. Chem. 2004, 84, 523–536. [Google Scholar] [CrossRef]
- Traversi, R.; Becagli, S.; Castellano, E.; Largiuni, O.; Migliori, A.; Severi, M.; Frezzotti, M.; Udisti, R. Spatial and temporal distribution of environmental markers from Coastal to Plateau areas in Antarctica by firn core chemical analysis. Int. J. Environ. Anal. Chem. 2004, 84, 457–470. [Google Scholar] [CrossRef]
- Saltzman, E.S. Ocean/Atmosphere Cycling of Dimethylsulfide. In Ice Core Studies of Global Biogeochemical Cycles. NATO ASI Series (Series I: Global Environmental Change); Delmas, R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 30, pp. 65–89. [Google Scholar] [CrossRef]
- Saigne, C.; Legrand, M. Measurements of methanesulphonic acid in Antarctic ice. Nature 1987, 330, 240–242. [Google Scholar] [CrossRef]
- Legrand, M.; Feniet-Saigne, C. Methanesulfonic acid in south polar snow layers: A record of strong El Niño? Geophys. Res. Lett. 1991, 18, 187–190. [Google Scholar] [CrossRef]
- Castebrunet, H.; Martinerie, P.; Genthon, C.; Cosme, E. A three-dimensional model study of methanesulphonic acid to non sea salt sulphate ratio at mid and high-southern latitudes. Atmos. Chem. Phys. Atmos. 2009, 9, 9449–9469. [Google Scholar] [CrossRef]
- Cole-Dai, J.; Mosley-Thompson, E.; Wight, S.P.; Thompson, L.G. A 4100-year record of explosive volcanism from an East Antarctica ice core. J. Geophys. Res. Atmos. 2000, 105, 24431–24441. [Google Scholar] [CrossRef]
- Ren, J.; Li, C.; Hou, S.; Xiao, C.; Qin, D.; Li, Y.; Ding, M. A 2680 year volcanic record from the DT-401 East Antarctic ice core. J. Geophys. Res. Atmos. 2010, 115, 11301. [Google Scholar] [CrossRef]
- Hammer, C.U. Initial direct current in the buildup of space charges and the acidity of ice cores. J. Phys. Chem. 1983, 87, 4099–4103. [Google Scholar] [CrossRef]
- Hammer, C.U. Acidity of polar ice cores in relation to absolute dating, past volcanism, and Radio-Echoes. J. Glaciol. 1980, 25, 359–372. [Google Scholar] [CrossRef]
- Legrand, M.; Delmas, R.J. A 220-year continuous record of volcanic H2SO4 in the Antarctic ice sheet. Nature 1987, 327, 671–676. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Hou, S.; Ekaykin, A.; Jouzel, J.; Aristarain, A.; Bernardo, R.T.; Bromwich, D.; Cattani, O.; Delmotte, M.; Falourd, S.; et al. A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*. J. Clim. 2008, 21, 3359–3387. [Google Scholar] [CrossRef]
- Kurita, N. Origin of Arctic water vapor during the ice-growth season. Geophys. Res. Lett. 2011, 38, L02709. [Google Scholar] [CrossRef]
- Wang, Y.; Sodemann, H.; Hou, S.; Masson-Delmotte, V.; Jouzel, J.; Pang, H. Snow accumulation and its moisture origin over Dome Argus, Antarctica. Clim. Dyn. 2013, 40, 731–742. [Google Scholar] [CrossRef]
- Vance, T.R.; Roberts, J.L.; Moy, A.D.; Curran, M.A.J.; Tozer, C.R.; Gallant, A.J.E.; Abram, N.J.; van Ommen, T.D.; Young, D.A.; Grima, C.; et al. Optimal site selection for a high-resolution ice core record in East Antarctica. Clim. Past 2016, 12, 595–610. [Google Scholar] [CrossRef]
- Vega, C.P.; Isaksson, E.; Schlosser, E.; Divine, D.; Martma, T.; Mulvaney, R.; Eichler, A.; Schwikowski-Gigar, M. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica. Cryosphere 2018, 12, 1681–1697. [Google Scholar] [CrossRef]
- Nyamgerel, Y.; Han, Y.; Kim, S.; Hong, S.-B.; Lee, J.; Hur, S.D. Chronological characteristics for snow accumulation on Styx Glacier in northern Victoria Land, Antarctica. J. Glaciol. 2020. [Google Scholar] [CrossRef]
- Kärkäs, E.; Teinilä, K.; Virkkula, A.; Aurela, M. Spatial variations of surface snow chemistry during two austral summers in western Dronning Maud Land, Antarctica. Atmos. Environ. 2005, 39, 1405–1416. [Google Scholar] [CrossRef]
- Zhang, M.J.; Li, Z.Q.; Xiao, C.D.; Ren, J.W.; Qin, D.H.; Kang, J.C.; Li, J. Decreasing trend of temperature in Princess Elizabeth Land, Antarctica in the past 150 years. Chin. Sci. Bull. 2002, 47, 1474–1478. [Google Scholar] [CrossRef]
- Hou, S.; Li, Y.; Xiao, C.; Pang, H.; Xu, J. Preliminary results of the close-off depth and the stable isotopic records along a 109.91 m ice core from Dome A, Antarctica. Sci. China Ser. D Earth Sci. 2009, 52, 1502–1509. [Google Scholar] [CrossRef]
- Ding, M.; Xiao, C.; Jin, B.; Ren, J.; Qin, D.; Sun, W. Distribution of δ18O in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica. Chin. Sci. Bull. 2010, 55, 2709–2714. [Google Scholar] [CrossRef]
- Ren, J.W.; Sun, J.Y.; Qin, D.H. Preliminary results of ionic concentrations in snow pits along the Zhongshan–Dome A traverse route, Antarctica. Ann. Glaciol. 2004, 39, 155–160. [Google Scholar] [CrossRef]
- Xiao, C.; Ding, M.; Masson-Delmotte, V.; Zhang, R.; Jin, B.; Ren, J.; Li, C.; Werner, M.; Wang, Y.; Cui, X.; et al. Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A, East Antarctica. Clim. Dyn. 2013, 41, 2427–2438. [Google Scholar] [CrossRef]
- Li, C.; Xiao, C.; Shi, G.; Ding, M.; Qin, D.; Ren, J. Spatial and temporal variability of marine-origin matter along a transect from Zhongshan Station to Dome A, Eastern Antarctica. J. Environ. Sci. 2016, 46, 190–202. [Google Scholar] [CrossRef]
- Li, C.; Qin, X.; Ding, M.; Guo, R.; Xiao, C.; Hou, S.; Bian, L.; Qin, D.; Ren, J. Temporal variations in marine chemical concentrations in coastal areas of eastern Antarctica and associated climatic causes. Quat. Int. 2014, 352, 16–25. [Google Scholar] [CrossRef]
- Mulvaney, R.; Wolff, E.W. Spatial variability of the major chemistry of the Antarctic ice sheet. Ann. Glaciol. 1994, 20, 440–447. [Google Scholar] [CrossRef]
- Khodzher, T.V.; Golobokova, L.P.; Osipov, E.Y.; Shibaev, Y.A.; Lipenkov, V.Y.; Osipova, O.P.; Petit, J.R. Spatial-temporal dynamics of chemical composition of surface snow in East Antarctica along the Progress station-Vostok station transect. Cryosphere 2014, 8, 931–939. [Google Scholar] [CrossRef]
- Minikin, A.; Wagenbach, D.; Graf, W.; Kipfstuhl, J. Spatial and seasonal variations of the snow chemistry at the central Filchner-Ronne Ice Shelf, Antarctica. Ann. Glaciol. 1994, 20, 283–290. [Google Scholar] [CrossRef]
- Ren, J.W.; Qin, D.H. Distribution of deuterium excess in surface snow of the Antarctic ice sheet. Chin. Sci. Bull. 1995, 40, 1629–1633. [Google Scholar]
- Ding, M.; Xiao, C.; Li, Y.; Ren, J.; Hou, S.; Jin, B.; Sun, B. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol. 2011, 57, 658–666. [Google Scholar] [CrossRef]
- Li, R.; Xiao, C.; Sneed, S.; Yan, M. A continuous 293-year record of volcanic events in an ice core from Lambert Glacier basin, East Antarctica. Antarct. Sci. 2012, 24, 293–298. [Google Scholar] [CrossRef]
- Lis, G.; Wassenaar, L.I.; Hendry, M.J. High-Precision Laser Spectroscopy D/H and 18O/16O Measurements of Microliter Natural Water Samples. Anal. Chem. 2008, 80, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Mahalinganathan, K.; Thamban, M.; Laluraj, C.M.; Redkar, B.L. Relation between surface topography and sea-salt snow chemistry from Princess Elizabeth Land, East Antarctica. Cryosphere 2012, 6, 505–515. [Google Scholar] [CrossRef]
- Ma, Y.F.; Bian, L.G.; Xiao, C.D.; Allison, I.; Zhou, X.J. Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarct. Sci. 2010, 22, 443–459. [Google Scholar] [CrossRef]
- Bintanja, R.; Severijns, C.; Haarsma, R.; Hazeleger, W. The future if Antarctica’s surface wings simulated by a high-resolution global climate model: 1. Model description and validation. J. Geophys. Res. Atmos. 2014, 119, 7136–7159. [Google Scholar] [CrossRef]
- King, J.C.; Turner, J. Antarctic Meteorology and Climatology; Cambridge University Press (CUP): Cambridge, UK, 1997. [Google Scholar]
- Suzuki, T.; Iizuka, Y.; Matsuoka, K.; Furukawa, T.; Kamiyama, K.; Watanabe, O. Distribution of sea salt components in snow cover along the traverse route from the coast to Dome Fuji station 1000 km inland at east Dronning Maud Land, Antarctica. Tellus B 2002, 54, 407–411. [Google Scholar] [CrossRef]
- Broecker, W.S.; Peng, T.H. Tracers in the sea. In Lamont-Doherty Geological Observatory; Eldigio Press: New York, NY, USA, 1982. [Google Scholar]
- Röthlisberger, R.; Mulvaney, R.; Wolff, E.W.; Hutterli, M.A.; Bigler, M.; De Angelis, M.; Hansson, M.E.; Steffensen, J.P.; Udisti, R. Limited dechlorination of sea-salt aerosols during the last glacial period: Evidence from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core. J. Geophys. Res. Atmos. 2003, 108, 4526. [Google Scholar] [CrossRef]
- Frezzotti, M.; Gandolfi, S.; Urbini, S. Snow megadunes in Antarctica: Sedimentary structure and genesis. J. Geophys. Res. Atmos. 2002, 107, ACL 1-1. [Google Scholar] [CrossRef]
- Holland, H.D. The Chemistry of the Atmosphere and Oceans; Wiley: New York, NY, USA, 1978; p. 351. [Google Scholar]
- De Angelis, M.; Steffensen, J.P.; Legrand, M.; Clausen, H.; Hammer, C. Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: Comparison with east Antarctic records. J. Geophys. Res. Oceans 1997, 102, 26681–26698. [Google Scholar] [CrossRef]
- Summerhayes, C.P.; Thorpe, S.A. Oceanography: An Illustrated Guide; Wiley: New York, NY, USA, 1996; Chapter 11; pp. 165–181. [Google Scholar]
- Becagli, S.; Proposito, M.; Benassai, S.; Gragnani, R.; Magand, O.; Traversi, R.; Udisti, R. Spatial distribution of biogenic sulphur compounds (MSA, nssSO42−) in the northern Victoria Land–Dome C–Wilkes Land area, East Antarctica. Ann. Glaciol. 2005, 41, 23–31. [Google Scholar] [CrossRef]
- Benassai, S.; Becagli, S.; Gragnani, R.; Magand, O.; Proposito, M.; Fattori, I.; Traversi, R.; Udisti, R. Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses. Ann. Glaciol. 2005, 41, 32–40. [Google Scholar] [CrossRef]
- Rankin, A.M.; Auld, V.; Wolff, E.W. Frost flowers as a source of fractionated sea salt aerosol in the polar regions. Geophys. Res. Lett. 2000, 27, 3469–3472. [Google Scholar] [CrossRef]
- Rankin, A.M.; Wolff, E.W.; Martin, S. Frost flowers: Implications for tropospheric chemistry and ice core interpretation. J. Geophys. Res. Atmos. 2002, 107, AAC-4. [Google Scholar] [CrossRef]
- Abram, N.J.; Wolff, E.W.; Curran, M.A.J. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 2013, 79, 168–183. [Google Scholar] [CrossRef]
- Bates, T.S.; Calhoun, J.A.; Quinn, P.K. Variations in the Methanesulphonate to Sulphate Molar Ratio in Submicrometer Marine Aerosol Particles over the South Pacific Ocean. J. Geophys. Res. Atmos. 1992, 97, 9859–9865. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Gao, Y.; Xu, G.; Yang, X.; Lin, Q.; Zhang, Y. Latitudinal distributions of atmospheric MSA and MSA/nss-SO42− ratios in summer over the high latitude regions of the Southern and Northern Hemispheres. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Legrand, M.; Feniet-Saigne, C.; Saltzman, E.S.; Germain, C. Spatial and temporal variations of methanesulfonic acid and non sea salt sulfate in Antarctic ice. J. Atmos. Chem. 1992, 14, 245–260. [Google Scholar] [CrossRef]
- Legrand, M.; Mayewski, P. Glaciochemistry of polar ice cores: A review. Rev. Geophys. 1997, 35, 219–243. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Petit, J.R.; White, J.W.C.; Young, N.W.; Jouzel, J.; Korotkevich, Y.S. Deuterium excess in recent Antarctic snow. J. Geophys. Res. Atmos. 1991, 96, 5113–5122. [Google Scholar] [CrossRef]
Site | Location | Slope (m km−1) | Altitude (m) | Route Distance from Zhongshan Station (km) |
---|---|---|---|---|
LH9601 | 69° 26′ 01″ S 76° 20′ 00″ E | 38.5 | 285 | 7.4 |
LHA006 | 69°31′13.6″ S 76° 17′ 36″ E | 22.4 | 520 | 17.9 |
L156 | 69° 33′ 57.2″ S 76° 16′ 05.7″ E | 24.4 | 586 | 20.6 |
LH404 | 69° 36′ 32″ S 76° 25′ 15.3″ E | 13.9 | 737 | 31.5 |
LH397 | 69° 42′37.3″ S 76° 28′ 29.6″ E | 9.0 | 849 | 44.0 |
LH386 | 69° 48′ 30.8″ S 76° 28′ 41.7″ E | 9.5 | 955 | 55.2 |
LGB72 | 69° 55′ 16.9″ S 76° 29′ 22.7″ E | 6.7 | 1041 | 68.0 |
LT987 | 70° 00′ 31.5″ S 76° 32′ 03.5″ E | 11.6 | 1157 | 78.0 |
LT981 | 70° 06′ 52″ S 76° 35′ 33″ E | 11.1 | 1290 | 90.0 |
LT976 | 70° 12′ 00.6″ S 76° 38′ 14″ E | 5.3 | 1343 | 100.0 |
LT971 | 70° 17′ 29.3″ S 76° 41′ 57″ E | 7.4 | 1417 | 110.0 |
LT966 | 70° 22′ 52″ S 76° 45′ 11″ E | 10.3 | 1520 | 120.0 |
LT961 | 70° 28′ 07″ S 76° 47′ 51.5″ E | 4.5 | 1565 | 130.0 |
LT956 | 70° 33′23.4″ S 76° 51′ 15.2″ E | 9.2 | 1657 | 140.0 |
LT951 | 70° 38′ 37.7″ S 76° 55′ 24″ E | 7.2 | 1729 | 150.0 |
LT946 | 70° 43′ 48.8″ S 76° 59′ 36.5″ E | 5.7 | 1786 | 160.0 |
LT941 | 70° 49′ 02″ S 77° 03′ 40.6″ E | 6.6 | 1852 | 170.0 |
Site | LHA006 | LGB69 |
---|---|---|
Depth (m) | 1.0 | 1.8 |
Sample number | 50 | 90 |
Altitude (m) | 520 | 1860 |
Slope (m km−1) | 22.4 | 4.0 |
Distance from the coast (km) | 17.9 | 172 |
Annual accumulation rate * (kg m−2 a−1) | 200 | 255 |
Site | Na+ | Mg2+ | Ca2+ | Cl− | MSA | SO42− | nssSO42− | nssCa2+ | δD | δ18O | d-Excess |
---|---|---|---|---|---|---|---|---|---|---|---|
µg L−1 | ‰ | ||||||||||
LH9601 | 1458.92 | 49.32 | 27.63 | 1561.71 | 2.77 | 132.44 | −235.93 | −27.81 | −123.57 | −16.03 | 4.70 |
LHA006 | 1480.13 | 76.56 | 29.42 | 1659.08 | 143.02 | 399.60 | 25.86 | −26.83 | −83.82 | −10.64 | 1.27 |
L156 | 970.78 | 46.22 | 12.17 | 952.48 | 112.22 | 347.64 | 102.52 | −24.72 | −111.84 | −14.46 | 3.86 |
LH404 | 150.00 | 22.05 | 7.85 | 184.64 | 108.93 | 260.93 | 223.06 | 2.15 | −128.96 | −16.43 | 2.47 |
LH397 | 49.25 | 9.40 | 26.99 | 77.99 | 42.89 | 130.89 | 118.45 | 25.12 | −144.86 | −18.46 | 2.78 |
LH386 | 111.62 | 14.48 | 53.40 | 155.51 | 145.82 | 363.56 | 335.38 | 49.16 | −139.09 | −16.83 | −4.47 |
LGB72 | 88.34 | 12.07 | 7.37 | 125.56 | 108.09 | 340.76 | 318.46 | 4.02 | −154.95 | −18.99 | −3.01 |
LT987 | 20.37 | 3.07 | 6.93 | 37.34 | 24.89 | 93.79 | 88.65 | 6.16 | −163.55 | −20.53 | 0.73 |
LT981 | 10.88 | 4.16 | 3.66 | 23.85 | 17.67 | 80.87 | 78.12 | 3.25 | −164.42 | −20.91 | 2.83 |
LT976 | 29.35 | 3.77 | 11.51 | 47.71 | 40.92 | 169.65 | 162.24 | 10.40 | −174.39 | −22.00 | 1.64 |
LT971 | 29.27 | 3.82 | 14.76 | 75.36 | 42.51 | 161.71 | 154.31 | 13.64 | −169.00 | −21.58 | 3.63 |
LT966 | 14.81 | 2.44 | 2.37 | 25.08 | 20.93 | 62.22 | 58.48 | 1.81 | −168.83 | −21.73 | 4.97 |
LT961 | 19.51 | 3.22 | 2.01 | 38.72 | 44.25 | 122.28 | 117.35 | 1.27 | −180.78 | −22.70 | 0.78 |
LT956 | 23.05 | 3.59 | 2.04 | 42.50 | 48.09 | 110.53 | 104.71 | 1.17 | −183.75 | −23.27 | 2.44 |
LT951 | 10.98 | 1.89 | 3.85 | 19.36 | 29.16 | 93.99 | 91.22 | 3.44 | −184.92 | −23.32 | 1.66 |
LT946 | 7.93 | 1.40 | 2.83 | 17.80 | 31.21 | 78.79 | 76.79 | 2.53 | −193.52 | −24.76 | 4.53 |
LT941 | 8.13 | 1.37 | 1.44 | 14.67 | 17.60 | 72.49 | 70.43 | 1.14 | −193.06 | −24.39 | 2.04 |
Na+ | Mg2+ | Ca2+ | Cl− | MSA | nssSO42− | δ18O | Distance | Altitude | |
---|---|---|---|---|---|---|---|---|---|
Na+ | 1 | 0.959 * | 0.427 | 0.998 * | 0.309 | −0.576 † | 0.789 * | −0.692 * | −0.768 * |
Mg2+ | 1 | 0.480 | 0.963 * | 0.530 † | −0.370 | 0.900 * | −0.762 * | −0.813 * | |
Ca2+ | 1 | 0.446 | 0.533 † | 0.106 | 0.639 * | −0.620 * | −0.619 * | ||
Cl− | 1 | 0.320 | −0.567 † | 0.796 * | −0.693 * | −0.768 * | |||
MSA | 1 | 0.574 † | 0.699 * | −0.533† | −0.493† | ||||
nssSO42− | 1 | −0.067 | 0.089 | 0.188 | |||||
δ18O | 1 | −0.929 * | −0.929 * | ||||||
Distance | 1 | 0.991 * | |||||||
Altitude | 1 |
Site | Cl−/Na+ | nssSO42−/SO42− | MSA/nssSO42− | nssCa2+/Ca2+ |
---|---|---|---|---|
(W/W) | (%) | (W/W) | (%) | |
LH9601 | 1.07 | −178 | −0.01 | −101 |
LHA006 | 1.12 | 6 | 5.53 | −91 |
L156 | 0.98 | 29 | 1.09 | −203 |
LH404 | 1.23 | 85 | 0.49 | 27 |
LH397 | 1.58 | 90 | 0.36 | 93 |
LH386 | 1.39 | 92 | 0.43 | 92 |
LGB72 | 1.42 | 93 | 0.34 | 55 |
LT987 | 1.83 | 95 | 0.28 | 89 |
LT981 | 2.19 | 97 | 0.23 | 89 |
LT976 | 1.63 | 96 | 0.25 | 90 |
LT971 | 2.57 | 95 | 0.28 | 92 |
LT966 | 1.69 | 94 | 0.36 | 76 |
LT961 | 1.99 | 96 | 0.38 | 63 |
LT956 | 1.84 | 95 | 0.46 | 57 |
LT951 | 1.76 | 97 | 0.32 | 89 |
LT946 | 2.24 | 97 | 0.41 | 89 |
LT941 | 1.80 | 97 | 0.25 | 79 |
Site | LHA006 | LGB69 | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Maximum | Minimum | σ | Mean | Maximum | Minimum | σ | |
(µg L−1) | ||||||||
MSA | 48.68 | 345.86 | 1.36 | 64.93 | 6.42 | 18.08 | 0.00 | 4.57 |
Cl− | 1046.18 | 2660.70 | 262.10 | 716.06 | 66.47 | 268.10 | 5.90 | 51.22 |
SO42− | 258.18 | 1126.74 | 121.17 | 170.50 | 38.80 | 104.08 | 11.85 | 20.84 |
nssSO42− | 35.19 | 580.68 | −301.69 | 140.25 | 29.44 | 96.27 | 2.24 | 20.26 |
Na+ | 883.13 | 2205.96 | 182.40 | 585.12 | 37.08 | 195.51 | 2.02 | 34.24 |
Mg2+ | 93.07 | 223.38 | 27.66 | 58.51 | 7.25 | 28.75 | 0.53 | 6.01 |
Ca2+ | 32.10 | 110.00 | 8.87 | 21.58 | 11.49 | 101.53 | 2.13 | 14.26 |
nssCa2+ | −1.46 | 87.11 | −23.79 | 17.20 | 10.08 | 100.97 | 0.52 | 14.32 |
δD | δ18O | d-Excess | Distance | Altitude | |
---|---|---|---|---|---|
δD | 1 | 0.997 * | −0.077 | −0.929 * | −0.933 * |
δ18O | 1 | −0.157 | −0.929 * | −0.929 * | |
d-excess | 1 | 0.111 | 0.064 | ||
Distance | 1 | 0.991 * | |||
Altitude | 1 |
This Study | Li et al. [27] | Xiao et al. [26] | |
---|---|---|---|
transect | Zhongshan Station-LGB69 | Zhongshan Station-Dome A | Zhongshan Station-Dome A |
date | 2001/2002 | 2012/2013 | 2007/2008 |
δD-distance | −54.17‰/100 km | −18.15‰/100 km | −16.3‰/100 km |
δD-altitude | −5.99‰/100 m | −7.14‰/100 m | −8.5‰/100 m |
δ18O-distance | −6.84‰/100 km | −2.37‰/100 km | −2.20‰/100 km |
δ18O- altitude | −0.75‰/100 m | −0.93‰/100 m | −1.1‰/100 m |
d-excess-distance | 0.53‰/100 km | - | 1.31‰/100 km |
d-excess-altitude | 0.03‰/100 m | - | 0.6‰/100 m |
d-excess variation range | −4.47‰–4.97‰ | −3.38‰–15.12‰ | 2.47‰–39.74‰ |
Site | LHA006 | LGB69 | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Maximum | Minimum | σ | Mean | Maximum | Minimum | σ | |
(‰) | ||||||||
δD | −143.36 | −121.15 | −178.19 | 16.47 | −244.71 | −200.27 | −302.09 | 27.22 |
δ18O | −18.33 | −15.04 | −23.26 | 2.10 | −30.91 | −25.04 | −37.96 | 3.22 |
d-excess | 3.32 | 10.88 | −1.25 | 2.53 | 2.56 | 9.33 | −6.64 | 3.59 |
Sample number | 49 * | 89 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Yan, M.; Mulvaney, R.; Qian, Z.; Liu, L.; An, C.; Xiao, C.; Zhang, Y. Spatial Variability of Glaciochemistry along a Transect from Zhongshan Station to LGB69, Antarctica. Atmosphere 2021, 12, 393. https://doi.org/10.3390/atmos12030393
Huang W, Yan M, Mulvaney R, Qian Z, Liu L, An C, Xiao C, Zhang Y. Spatial Variability of Glaciochemistry along a Transect from Zhongshan Station to LGB69, Antarctica. Atmosphere. 2021; 12(3):393. https://doi.org/10.3390/atmos12030393
Chicago/Turabian StyleHuang, Weilong, Ming Yan, Robert Mulvaney, Zuoqin Qian, Leibao Liu, Chunlei An, Cunde Xiao, and Yujia Zhang. 2021. "Spatial Variability of Glaciochemistry along a Transect from Zhongshan Station to LGB69, Antarctica" Atmosphere 12, no. 3: 393. https://doi.org/10.3390/atmos12030393
APA StyleHuang, W., Yan, M., Mulvaney, R., Qian, Z., Liu, L., An, C., Xiao, C., & Zhang, Y. (2021). Spatial Variability of Glaciochemistry along a Transect from Zhongshan Station to LGB69, Antarctica. Atmosphere, 12(3), 393. https://doi.org/10.3390/atmos12030393