Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spatial Distribution of Atmospheric Hg
2.2.1. Atmospheric Hg Measurements
2.2.2. Geostatistical Analysis and Mapping
2.3. Atmospheric Hg Transport Model
2.3.1. Fugacity Model for Hg Transport
2.3.2. Trajectory Modeling for Hg Transport in the Atmosphere
3. Results and Discussion
3.1. Spatial Distribution
3.1.1. Interpolation
3.1.2. Cross-Validation, Comparison to Literature
3.2. Fugacity Modeling
3.3. Trajectory Analysis and Interpretation
3.3.1. Identification of the Areas of Impact
3.3.2. Atmospheric Transportation Routes
Heating Season
Non-Heating Season
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Abass, K.; Koiranen, M.; Mazej, D.; Tratnik, J.S.; Horvat, M.; Hakkola, J.; Järvelin, M.-R.; Rautio, A. Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables. Environ. Sci. Pollut. Res. 2017, 24, 1347–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Feky, A.; El-Azab, W.; Ebiad, M.; Masod, M.B.; Faramawy, S. Monitoring of elemental mercury in ambient air around an Egyptian natural gas processing plant. J. Nat. Gas Sci. Eng. 2018, 54, 189–201. [Google Scholar] [CrossRef]
- Cole, A.S.; Steffen, A.; Eckley, C.S.; Narayan, J.; Pilote, M.; Tordon, R.; Graydon, J.A.; Louis, V.L.S.; Xu, X.; Branfireun, B.A. A Survey of Mercury in Air and Precipitation across Canada: Patterns and Trends. Atmosphere 2014, 5, 635–668. [Google Scholar] [CrossRef] [Green Version]
- Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. Discuss. 2010, 10, 8245–8265. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Driscoll, C.T.; Huang, J.; Holsen, T.M.; Blackwell, B.D. Modeling and Mapping of Atmospheric Mercury Deposition in Adirondack Park, New York. PLoS ONE 2013, 8, e59322. [Google Scholar] [CrossRef]
- Acquavita, A.; Biasiol, S.; Lizzi, D.; Mattassi, G.; Pasquon, M.; Skert, N.; Marchiol, L. Gaseous Elemental Mercury Level and Distribution in a Heavily Contaminated Site: The Ex-chlor Alkali Plant in Torviscosa (Northern Italy). Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Howard, D.; Nelson, P.F.; Edwards, G.C.; Morrison, A.L.; Fisher, J.A.; Ward, J.; Harnwell, J.; Van Der Schoot, M.; Atkinson, B.; Chambers, S.D.; et al. Atmospheric mercury in the Southern Hemisphere tropics: Seasonal and diurnal variations and influence of inter-hemispheric transport. Atmos. Chem. Phys. Discuss. 2017, 17, 11623–11636. [Google Scholar] [CrossRef] [Green Version]
- Sunderland, E.M.; Chmura, G.L. An inventory of historical mercury emissions in Maritime Canada: Implications for present and future contamination. Sci. Total Environ. 2000, 256, 39–57. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The Chemical Cycle and Bioaccumulation of Mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-J.; Cheng, M.-D.; Schroeder, W.H. Transport patterns and potential sources of total gaseous mercury measured in Canadian high Arctic in 1995. Atmos. Environ. 2001, 35, 1141–1154. [Google Scholar] [CrossRef]
- Budnik, L.T.; Casteleyn, L. Mercury pollution in modern times and its socio-medical consequences. Sci. Total Environ. 2019, 654, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Navrátil, T.; Šimeček, M.; Shanley, J.B.; Rohovec, J.; Hojdová, M.; Houška, J. The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. Sci. Total Environ. 2017, 586, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, P.; Ding, L.; Li, Z.; Zhu, W.; He, T.; Feng, X. Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. J. Geochem. Explor. 2018, 194, 81–87. [Google Scholar] [CrossRef]
- Turner, R.; Kopec, A.D.; Charette, M.A.; Henderson, P. Current and historical rates of input of mercury to the Penobscot River, Maine, from a chlor-alkali plant. Sci. Total Environ. 2018, 637, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Kopec, A.D.; Kidd, K.A.; Fisher, N.S.; Bowen, M.; Francis, C.; Payne, K.; Bodaly, R. Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant. Sci. Total Environ. 2019, 649, 770–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, Z.; Li, Z.; Zhu, W.; Li, P.; Feng, X. Mercury speciation and mobility in salt slurry and soils from an abandoned chlor-alkali plant, Southwest China. Sci. Total Environ. 2019, 652, 900–906. [Google Scholar] [CrossRef]
- UNEP (United Nations Environmental Protection). Study on the Possible Effects on Human Health and the Environment in Asia and the Pacific of the Trade of Products Containing Lead, Cadmium and Mercury 2010; United Nations Environmental Protection: Geneva, Switzerland, 2011. [Google Scholar]
- Fernández-Martínez, R.; Gómez-Mancebo, B.; Peña, E.J.; Galán, P.; Matsuyama, A.; García, F.; Rucandio, I. Monitoring of mercury and other metals mobility by sequential fractionation in soils nearby an abandoned chlor-alkali plant in Managua (Nicaragua). Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Walker, T.R. Mercury concentrations in marine sediments near a former mercury cell chlor-alkali plant in eastern Canada. Mar. Pollut. Bull. 2016, 107, 398–401. [Google Scholar] [CrossRef]
- Wängberg, I.; Edner, H.; Ferrara, R.; Lanzillotta, E.; Munthe, J.; Sommar, J.; Sjöholm, M.; Svanberg, S.; Weibring, P. Atmospheric mercury near a chlor-alkali plant in Sweden. Sci. Total Environ. 2003, 304, 29–41. [Google Scholar] [CrossRef]
- Grönlund, R.; Sjöholm, M.; Weibring, P.; Edner, H.; Svanberg, S. Elemental mercury emissions from chlor-alkali plants measured by lidar techniques. Atmos. Environ. 2005, 39, 7474–7480. [Google Scholar] [CrossRef]
- Thoma, E.D.; Secrest, C.; Hall, E.S.; Jones, D.L.; Shores, R.C.; Modrak, M.; Hashmonay, R.; Norwood, P. Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring. Atmos. Environ. 2009, 43, 753–757. [Google Scholar] [CrossRef]
- Bozheyeva, G. The Pavlodar chemical weapons plant in Kazakhstan: History and legacy. Nonprolif. Rev. 2000, 7, 136–145. [Google Scholar] [CrossRef]
- Ilyushchenko, M.A.; Panichkin, V.; Randall, P.M.; Kamberov, R. Former Chlor-alkali Factory in Pavlodar, Kazakhstan: Mercury Pollution, Treatment Options, and Results of Post-demercurization Monitoring. In Bioremediation of Mercury: Current Research and Industrial Applications; Wagner-Döbler, I., Ed.; Caister Academic Press: Poole, UK, 2013. [Google Scholar]
- Ullrich, S.M.; Ilyushchenko, M.A.; Kamberov, I.M.; Tanton, T.W. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: Sediment and water contamination of Lake Balkyldak and the River Irtysh. Sci. Total Environ. 2007, 381, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.M.; Ilyushchenko, M.A.; Tanton, T.W.; Uskov, G.A. Mercury contamination in the vicinity of a derelict chlor-alkali plant—Part II: Contamination of the aquatic and terrestrial food chain and potential risks to the local population. Sci. Total Environ. 2007, 381, 290–306. [Google Scholar] [CrossRef]
- Ullrich, S.M.; Ilyushchenko, M.A.; Uskov, G.A.; Tanton, T.W. Mercury distribution and transport in a contaminated river system in Kazakhstan and associated impacts on aquatic biota. Appl. Geochem. 2007, 22, 2706–2734. [Google Scholar] [CrossRef]
- Kajenthira, A.; Holmes, J.; McDonnell, R.A. The role of qualitative risk assessment in environmental management: A Kazakhstani case study. Sci. Total Environ. 2012, 420, 24–32. [Google Scholar] [CrossRef]
- Shakhova, T.S.; Talovskaya, A.V.; Yazikov, E.G.; Filimonenko, E.A.; Lyapina, E.E. Assessment of Mercury Pollution in the Vicinity of Petrochemical Complex in Winter (by the Example of Pavlodar, Kazakhstan). Bull. Tomsk Polytech. Univ.-Geo Assets Eng. 2016, 327, 16–25. [Google Scholar]
- Ilyushchenko, M.A.; Kamberov, R.I.; Kuzmenko, L.V.; Yakovleva, L.V. Management of Mercury Contamination at Pavlodar, Kazakhstan. NMP2-CT-2004-505561 BIOMERCURY. 2004. Available online: http://hg-pavlodar.narod.ru/en/bm/bmindex.htm (accessed on 10 June 2020).
- Ilyushchenko, M.A.; Kamberov, R.I.; Kuzmenko, L.V.; Yakovleva, L.V. Environmental Risk Assessment and Management at Pavlodar. ISTC Project K-1240p. 2004. Available online: http://hg-pavlodar.narod.ru/en/ra/raindex.htm (accessed on 26 February 2019).
- Khrapunov, V.Y.; Isakova, R.A.; Levintov, B.L.; Kalb, P.D.; Kamberov, I.M.; Trebukhov, A. Removal of Mercury from Contaminated Soils at the Pavlodar Chemical Plant. In Proceedings of the REWAS’04: Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid, Spain, 26–29 September 2004. [Google Scholar]
- Andis, M.S.L.; Keeler, G.J.; Al-Wali, K.I.; Stevens, R.K. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmos. Environ. 2004, 38, 613–622. [Google Scholar] [CrossRef]
- Grangeon, S.; Guédron, S.; Asta, J.; Sarret, G.; Charlet, L. Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol. Indic. 2012, 13, 178–183. [Google Scholar] [CrossRef]
- Guédron, S.; Grangeon, S.; Jouravel, G.; Charlet, L.; Sarret, G. Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): Contribution of canopy uptake. Sci. Total Environ. 2013, 445, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Esbrí, J.M.; López-Berdonces, M.A.; Fernández-Calderón, S.; Higueras, P.; Díez, S. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): An integrated analysis. Environ. Sci. Pollut. Res. 2015, 22, 4842–4850. [Google Scholar] [CrossRef] [PubMed]
- Kethireddy, S.R.; Tchounwou, P.B.; Ahmad, H.A.; Yerramilli, A.; Young, J.H. Geospatial Interpolation and Mapping of Tropospheric Ozone Pollution Using Geostatistics. Int. J. Environ. Res. Public Health 2014, 11, 983–1000. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Li, Y. Spatial interpolation of temperature in the United States using residual kriging. Appl. Geogr. 2013, 44, 112–120. [Google Scholar] [CrossRef]
- Panday, D.; Maharjan, B.; Chalise, D.; Shrestha, R.K.; Twanabasu, B.; Panday, D. Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS. PLoS ONE 2018, 13, e0206350. [Google Scholar] [CrossRef]
- Mackay, D.; Paterson, S.; Shiu, W. Generic models for evaluating the regional fate of chemicals. Chemosphere 1992, 24, 695–717. [Google Scholar] [CrossRef]
- Su, C.; Zhang, H.; Cridge, C.; Liang, R. A review of multimedia transport and fate models for chemicals: Principles, features and applicability. Sci. Total Environ. 2019, 668, 881–892. [Google Scholar] [CrossRef]
- Qureshi, A.; MacLeod, M.; Scheringer, M.; Hungerbühler, K. Mercury cycling and species mass balances in four North American lakes. Environ. Pollut. 2009, 157, 452–462. [Google Scholar] [CrossRef]
- Diamond, M.; Mackay, D.; Welbourn, P. Models of multi-media partitioning of multi-species chemicals: The fugacity/aquivalence approach. Chemosphere 1992, 25, 1907–1921. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Z.; Žagar, D. Mercury transport and fate models in aquatic systems: A review and synthesis. Sci. Total Environ. 2018, 639, 538–549. [Google Scholar] [CrossRef]
- Ilyushchenko, M.A.; Daukeyev, G.Z.; Tanton, T.W. Post-Containment Management and Monitoring of Mercury Pollution in Site of Former P.O. “Khimprom” and Assessment of Environmental Risk Posed by Contamination of Groundwater and Adjacent Water Bodies of the Northern Industrial Area of Pavlodar; ISTC Project No.K-1240P; International Science and Technology Center: Moscow, Russia, 2009.
- Mackay, D.; Paterson, S. Calculating fugacity. Environ. Sci. Technol. 1981, 15, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Ilyushchenko, M.A.; Uskov, G.A.; Zyryanova, N.A. Mercury (Hg) contamination of fish fauna of Bylkyldak technical pond. KazNU Sci. J. 2002, 11, 102–105. (In Russian) [Google Scholar]
- Randall, P.; Ilyushchenko, M.A.; Lapshin, E.; Kuzmenko, L. Case study: Mercury pollution near a chemical plant in Northern Kazakhstan. Air Waste Manag. Assoc. 2005, 2, 19–24. [Google Scholar]
- Mackay, D.; Joy, M.; Paterson, S. A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in lakes. Chemosphere 1983, 12, 981–997. [Google Scholar] [CrossRef]
- Ethier, A.; Atkinson, J.F.; DePinto, J.V.; Lean, D.R.S. Estimating mercury concentrations and fluxes in the water column and sediment of Lake Ontario with HERMES model. Environ. Pollut. 2012, 161, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Anil, I.; Karaca, F.; Alagha, O. Investigation of Long-range Atmospheric Transport Effects on Istanbul: “Inhalable Particulate Matter Episodes”. Ekoloji 2009, 19, 86–97. [Google Scholar] [CrossRef]
- Karaca, F.; Anil, I.; Alagha, O. Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity. Atmos. Environ. 2009, 43, 5713–5722. [Google Scholar] [CrossRef]
- Karaca, F.; Camci, F. Distant source contributions to PM10 profile evaluated by SOM based cluster analysis of air mass trajectory sets. Atmos. Environ. 2010, 44, 892–899. [Google Scholar] [CrossRef]
- Uygur, N.; Karaca, F.; Alagha, O. Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models. Atmos. Res. 2010, 95, 55–64. [Google Scholar] [CrossRef]
- Zemmer, F.; Karaca, F.; Ozkaragoz, F. Ragweed pollen observed in Turkey: Detection of sources using back trajectory models. Sci. Total Environ. 2012, 430, 101–108. [Google Scholar] [CrossRef]
- Anıl, I.; Golcuk, K.; Karaca, F. ATR-FTIR Spectroscopic Study of Functional Groups in Aerosols: The Contribution of a Saharan Dust Transport to Urban Atmosphere in Istanbul, Turkey. Water Air Soil Pollut. 2014, 225, 1–14. [Google Scholar] [CrossRef]
- Anil, I.; Alagha, O.; Karaca, F. Effects of transport patterns on chemical composition of sequential rain samples: Trajectory clustering and principal component analysis approach. Air Qual. Atmos. Health 2017, 10, 1193–1206. [Google Scholar] [CrossRef]
- Draxier, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Phillips, M. Using Reverse Air Trajectory (HYSPLIT) to Identify Potential Sources of Hg and Jurisdictional Rule. Epidemiology 2007, 18, S121. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Mercury in Europe’s Environment: A Priority for European and Global Action; Publications Office of the European Union: Luxembourg, 2018. [CrossRef]
- Arctic Monitoring and Assessment Programme (AMAP); United Nations Environment Programme (UNEP). Technical Background Report for the Global Mercury Assessment. 2013. Available online: https://www.amap.no/documents/download/1265/inline (accessed on 23 December 2020).
- Gibičar, D.; Horvat, M.; Logar, M.; Fajon, V.; Falnoga, I.; Ferrara, R.; Lanzillotta, E.; Ceccarini, C.; Mazzolai, B.; Denby, B.; et al. Human exposure to mercury in the vicinity of chlor-alkali plant. Environ. Res. 2009, 109, 355–367. [Google Scholar] [CrossRef]
- Wängberg, I.; Barregård, L.; Sällsten, G.; Haeger-Eugensson, M.; Munthe, J.; Sommar, J. Emissions, dispersion and human exposure of mercury from a Swedish chlor-alkali plant. Atmos. Environ. 2005, 39, 7451–7458. [Google Scholar] [CrossRef]
- Mackay, D.; Paterson, S. Fugacity revisited. The fugacity approach to environmental transport. Environ. Sci. Technol. 1982, 16, 654A–660A. [Google Scholar] [CrossRef]
- Suzuki, N.; Shibata, Y.; Ogasawara, K. Monitoring and modeling projects for fate of Hg species in Japan. Mercury Fate Transp. Glob. Atmos. 2009, 381–390. [Google Scholar] [CrossRef]
- Dincer, I.; Colpan, C.O.; Kadioglu, F. Causes, Impacts and Solutions to Global Warming; Springer: New York, NY, USA, 2013. [Google Scholar]
- Weatherspark. Average Weather in Pavlodar, Kazakhstan, Year Round—Weather Spark. Available online: https://weatherspark.com/y/108865/Average-Weather-in-Pavlodar-Kazakhstan-Year-Round (accessed on 10 June 2020).
- Ebinghaus, R.; Turner, R.R.; de Lacerda, L.D.; Vasiliev, O.; Salomons, W. Mercury Contaminated Sites: Characterization, Risk Assessment and Remediation; Springer: New York, NY, USA, 1999; pp. 366–367. [Google Scholar]
- Pryde, P. Environmental Resources and Constraints in the Former Soviet Republics; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Baeyens, W.; Dehandschutter, B.; Leermakers, M.; Bobrov, V.A.; Hus, R.; Baeyens-Volant, D. Natural Mercury Levels in Geological Enriched and Geological Active Areas: Case Study of Katun River and Lake Teletskoye, Altai (Siberia). Water Air Soil Pollut. 2003, 142, 375–393. [Google Scholar] [CrossRef]
- Vasiliev, O.; Obolenskiy, A.; Yagolnitser, M. Mercury as a pollutant in Siberia: Sources, fluxes and a regional budget. Sci. Total Environ. 1998, 213, 73–84. [Google Scholar] [CrossRef]
Hg0 | Value | Source |
---|---|---|
Data Temp (°C) | 25 | Assumed |
Molecular weight (g/mol) | 200.59 | HERMES model |
Log KOW | 0.623 | HERMES model |
Melting point (°C) | −38.87 | HERMES model |
Water solubility (g/m3) | 0.0334 | HERMES model |
Lake area (km2) | 15 | [26] |
Lake mean depth (m) | 4.5 | [26] |
Lake volume (m3) | 67,500,000 | Calculated |
Sediment active layer depth (m) | 0.01 | [41] |
Rain rate (m/yr) | 0.25 | [26] |
ρ Air (kg/m3) | 1.185413 | Widely accepted value |
ρ Aerosol (kg/m3) | 2000 | [41] |
ρ Water (kg/m3) | 1000 | Widely accepted value |
ρ SPM (kg/m3) | 1500 | [41] |
ρ Fish (kg/m3) | 1000 | [41] |
ρ Soil (kg/m3) | 2400 | [41] |
ρ Sediments (kg/m3) | 2400 | [41] |
OC fraction in SPM (g/g) | 0.2 | [41] |
OC fraction in soil (g/g) | 0.02 | [41] |
OC fraction in sediment (g/g) | 0.04 | [41] |
Fish lipid content | 0.03 | Selected based on fish types mentioned in [48] |
Total mass discharged (kg) | 1.00 × 106 | [26,49] |
Estimated Hg mass discharged in the lake (kg) | 135,400 | [25] |
Model (Total Mass in the System) | Level I (1000 t) | QWASI (135.4 t) | HERMES (135.4 t) | ||
---|---|---|---|---|---|
Mass | Concentration | Mass | Concentration | Concentration | |
Air (kg, ng/m3) | 9.98 × 105 | 9.98 × 106 | - | 1.70 × 101 | 1.70 × 101 |
Aerosol (kg, ng/m3) | 4.96 × 102 | 4.96 × 103 | - | - | - |
Soil (kg, ng/g) | 1.90 × 101 | 5.87 × 10−1 | - | - | |
Water (kg, ng/L) | 1.15 × 103 | 1.71 × 104 | 3.54 × 103 | 5.24 × 104 | 1.05 × 106 |
Suspended sediment (kg, ng/g) | 2.76 × 10−4 | 5.87 × 100 | 5.64 × 10−4 | 1.80 × 101 | 2.04 × 102 |
Sediment (kg, ng/g) | 4.23 × 10−1 | 1.17 × 100 | 1.17 × 10−1 | 3.61 × 100 | 8.29 × 106 |
Fish (kg, ng/g) | 1.45 × 10−4 | 2.15 × 100 | - | - | - |
Dissolved Hg0 (ng/L) | Dissolved MeHg (ng/L) | Dissolved Res Hg (ng/L) | Solids Hg0 (ng/g) | Solids MeHg (ng/g) | Solids Res Hg (ng/g) | |
---|---|---|---|---|---|---|
Air (kg, ng/m3) | 1.67 × 101 | 8.33 × 10−2 | 2.50 × 10−1 | - | - | - |
Water (kg, ng/L) | 2.09 × 104 | 3.09 × 104 | 1.00 × 106 | 4.04 × 100 | 5.98 × 100 | 1.94 × 102 |
Sediment (kg, ng/g) | 1.07 × 106 | 2.14 × 104 | 3.42 × 106 | 2.19 × 107 | 4.38 × 105 | 6.97 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guney, M.; Kumisbek, A.; Akimzhanova, Z.; Kismelyeva, S.; Beisova, K.; Zhakiyenova, A.; Inglezakis, V.; Karaca, F. Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant. Atmosphere 2021, 12, 275. https://doi.org/10.3390/atmos12020275
Guney M, Kumisbek A, Akimzhanova Z, Kismelyeva S, Beisova K, Zhakiyenova A, Inglezakis V, Karaca F. Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant. Atmosphere. 2021; 12(2):275. https://doi.org/10.3390/atmos12020275
Chicago/Turabian StyleGuney, Mert, Aiganym Kumisbek, Zhanel Akimzhanova, Symbat Kismelyeva, Kamila Beisova, Almagul Zhakiyenova, Vassilis Inglezakis, and Ferhat Karaca. 2021. "Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant" Atmosphere 12, no. 2: 275. https://doi.org/10.3390/atmos12020275
APA StyleGuney, M., Kumisbek, A., Akimzhanova, Z., Kismelyeva, S., Beisova, K., Zhakiyenova, A., Inglezakis, V., & Karaca, F. (2021). Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant. Atmosphere, 12(2), 275. https://doi.org/10.3390/atmos12020275