Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
Abstract
:1. Introduction
2. Instruments and Evaluation Methods
2.1. Lidar Data and Evaluation
2.2. In-Situ Measurements
3. Results
3.1. Lidar-Derived Aerosol Optical Properties in January–April 2019
3.2. Relation between the Optical Parameters and Relative Humidity (Rh)
3.3. In-Situ Measurements during Spring 2019
4. Discussion
4.1. Comparing Lidar Data 2019 with 2018 and 2014
4.2. Comparing Different Sites around Ny-Ålesund
5. Conclusions and Outlook
- The late winter–early spring season of 2019 was clear, with lower aerosol backscatter coefficient, especially in the altitude from 1.5 km to 3 km and lower non-sea salt sulphate concentration compared to previous years [13,14,27,51]. In contrast to other years, the aerosol backscatter in the free troposphere did not increase during March and April, the otherwise peak months for Arctic Haze. Therefore, for the European Arctic site of Ny-Ålesund and from the lidar perspective, 2019 presented itself “as a year without obvious Arctic Haze”. In the future, our findings can be compared with satellite lidar or ground-based observations from the American and Russian parts of the Arctic. Such a comparison could be used to answer the question, whether the (remaining) Arctic Haze phenomenon is mainly governed by the sources (decrease depending on source region) or sinks of aerosol (dependent on local meteorological conditions).
- In situ measurements from the two nearby stations, on mountain Zeppelin and at Gruvebadet (sea level), compared well for long-range advected sulphate on a seasonal basis (slope close to one). However, daily nss-sulphate concentration only showed a correlation in the order of 0.7. Moreover, we expect differences in aerosol composition between the two in situ sites, with less local marine aerosol at Zeppelin station. Therefore, a combined assessment of aerosol chemical composition at the Gruvebadet and Zeppelin sites is needed in the future.
- Over Ny-Ålesund, the aerosol load changed by less than a factor of 3.5 above 700 m. Surprisingly, the daily sampled nss-sulphate concentration erratically changed by a factor of 25 (from 0.1 to 2.5 ng m) both at Gruvebadet (ground level) and Zeppelin station (474 m a.s.l.), with the latter mostly lying above the boundary layer during the study period. Overall, spherical particles were observed by the lidar. In the higher troposphere, the aerosol backscatter coefficient was confined to low values, indicating longer temporal scales and less mixing with new air masses.
- A possible systematic bias between lidar and in situ measurements might be due to hygroscopic growth, which might partly be lost by warming and drying of the air flow in the inlets in Arctic conditions. However, no noticeable hygroscopic growth was found from synchronous lidar and radiosonde measurements. Higher than average backscatter values generally occurred at moderate relative humidity. Neither the aerosol backscatter coefficient nor the colour ratio showed any positive correlation to relative humidity. We conclude that obviously aerosol and moisture have different origins (pathways) and that part of the aerosol may have been washed out during its advection towards the remote site of Ny-Ålesund.
- Based on the lidar-derived uniform aerosol properties in the free troposphere and the high day-to-day variability of in situ-derived nss-sulphate concentration, we conclude that aerosol is mostly advected in the lowest free troposphere and mixed downward erratically into the shallow Arctic winter–spring boundary layer. Therefore, we hypothesize that the Arctic ground-based aerosol properties generally show higher temporal variability compared to the free troposphere. This implies that the comparison between lidar and ground-based in situ observations might be more reasonable on longer time scales, i.e., monthly and seasonal basis. The same holds true for the two in situ sites around Ny-Ålesund. Further studies on the boundary layer along the slope of Zeppelin mountain are needed to understand the reported differences in aerosol concentrations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Relation between Optical Parameters and Relative Humidity
Beta Classes | RH = 40% | RH = 50% | RH = 60% | RH = 70% | RH = 80% | RH > 85% |
---|---|---|---|---|---|---|
1 × | 0.28 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 |
5 × | 2.50 | 4.18 | 1.71 | 3.51 | 0.00 | 0.00 |
1 × | 0.00 | 0.38 | 1.71 | 0.00 | 2.80 | 0.00 |
1.5 × | 1.39 | 1.14 | 4.70 | 4.68 | 18.69 | 0.00 |
2 × | 20.56 | 23.57 | 46.15 | 8.77 | 11.21 | 46.43 |
2.5 × | 11.67 | 33.08 | 20.09 | 27.49 | 6.54 | 17.86 |
3 × | 24.72 | 8.37 | 10.68 | 18.71 | 21.50 | 7.14 |
3.5 × | 16.94 | 4.94 | 3.42 | 19.88 | 32.71 | 0.00 |
4 × | 6.39 | 11.03 | 10.26 | 13.45 | 2.80 | 0.00 |
4.5 × | 6.39 | 0.76 | 0.85 | 1.17 | 1.87 | 0.00 |
5 × | 0.83 | 0.00 | 0.00 | 1.75 | 0.00 | 0.00 |
5.5 × | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 |
6 × | 0.00 | 0.00 | 0.00 | 0.58 | 0.00 | 0.00 |
7 × | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
8 × | 0.00 | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 |
9 × | 0.00 | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 |
1 × | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1 × | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
sum | 91.67 | 87.83 | 100.00 | 100.00 | 100.00 | 71.43 |
No. of data points | 360 | 263 | 234 | 171 | 107 | 28 |
CR Classes | RH = 40% | RH = 50% | RH = 60% | RH = 70% | RH = 80% | RH > 85% |
---|---|---|---|---|---|---|
1.0001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.14 |
1.4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.14 |
1.6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.14 |
1.8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 |
2 | 1.11 | 1.52 | 7.26 | 0.00 | 0.93 | 0.00 |
2.2 | 2.22 | 3.04 | 4.70 | 2.92 | 3.74 | 3.57 |
2.4 | 0.00 | 0.38 | 2.14 | 1.75 | 0.93 | 0.00 |
2.6 | 3.33 | 2.28 | 2.56 | 8.77 | 6.54 | 0.00 |
2.8 | 9.72 | 4.18 | 1.28 | 7.02 | 0.00 | 0.00 |
3 | 7.50 | 3.80 | 1.28 | 4.68 | 0.93 | 0.00 |
3.5 | 35.83 | 21.29 | 19.23 | 28.65 | 11.21 | 7.14 |
4 | 23.89 | 38.40 | 29.06 | 9.94 | 32.71 | 28.57 |
4.5 | 3.89 | 5.70 | 23.08 | 17.54 | 12.15 | 35.71 |
5 | 1.39 | 1.90 | 3.42 | 6.43 | 20.56 | 0.00 |
sum | 87.50 | 80.61 | 90.60 | 81.29 | 70.09 | 96.43 |
No. of data points | 360 | 263 | 234 | 171 | 107 | 28 |
Appendix B. Comparing Data from 2018 with 2019
(532 nm) (10 m sr) | 700–1500 m | 1500–3000 m | 3000–5000 m | 5000–10,000 m |
---|---|---|---|---|
0–0.1 | 4.30 4.38 | 5.09 7.05 | 11.29 30.16 | 83.39 86.43 |
0.1–0.2 | 0.96 12.02 | 11.11 42.12 | 67.28 50.85 | 8.27 7.50 |
0.2–0.3 | 28.31 28.36 | 65.42 34.93 | 18.30 7.44 | 2.33 1.09 |
0.3–0.4 | 37.27 32.27 | 12.04 8.97 | 0.70 2.47 | 1.23 0.46 |
0.4–0.5 | 14.17 12.82 | 1.46 0.62 | 0.30 1.32 | 0.82 0.39 |
0.5–0.6 | 14.98 1.76 | 4.88 0.48 | 1.58 0.68 | 3.96 0.22 |
Range | 700–1500 m | 1500–3000 m | 3000–5000 m | 5000–10,000 m |
---|---|---|---|---|
0–1.0 | 50.25 40.80 | 33.83 8.19 | 8.30 11.45 | 5.76 15.07 |
1.0–1.4 1.0–1.5 | 42.48 24.81 | 54.55 33.73 | 30.28 28.03 | 9.12 27.49 |
1.4–2.0 1.5–2.0 | 2.05 13.62 | 6.00 27.75 | 39.58 26.95 | 17.83 26.84 |
2.0–2.5 | 0.96 5.83 | 0.58 13.03 | 14.08 11.91 | 22.79 13.47 |
2.5–3.0 | 0.63 1.05 | 0.58 3.68 | 4.67 6.13 | 20.57 5.87 |
3.0–3.5 | 0.91 0.47 | 0.33 1.65 | 0.54 2.86 | 10.78 2.78 |
3.5–4.0 | 0.58 0.31 | 0.24 0.92 | 0.07 1.33 | 4.13 1.38 |
4.0–5.0 | 0.10 0.66 | 0.61 1.31 | 0.26 1.68 | 3.51 1.37 |
CR | 700–1500 m | 1500–3000 m |
---|---|---|
1–2 | 10.64 6.46 | 3.75 4.67 |
2–3 | 15.44 44.98 | 7.75 19.31 |
3–4 | 30.66 24.06 | 26.98 32.26 |
4–5 | 41.92 7.04 | 60.65 18.32 |
References
- Serreze, M.; Francis, J. The Arctic Amplification Debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.; Furtado, J.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Dahlke, S.; Maturilli, M. Contribution of Atmospheric Advection to the Amplified Winter Warming in the Arctic North Atlantic Region. Adv. Meteorol. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Block, K.; Schneider, F.A.; Mülmenstädt, J.; Salzmann, M.; Quaas, J. Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wendisch, M.; Macke, A.; Ehrlich, A.; Lüpkes, C.; Mech, M.; Chechin, D.; Dethloff, K.; Barientos, C.; Bozem, H.; Brückner, M.; et al. The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bull. Am. Meteorol. Soc. 2018, 100. [Google Scholar] [CrossRef]
- Nakoudi, K.; Ritter, C.; Böckmann, C.; Kunkel, D.; Eppers, O.; Rozanov, V.; Mei, L.; Pefanis, V.; Jäkel, E.; Herber, A.; et al. Does the Intra-Arctic Modification of Long-Range Transported Aerosol Affect the Local Radiative Budget? (A Case Study). Remote Sens. 2020, 12, 2112. [Google Scholar] [CrossRef]
- Kirsanov, A.; Rozinkina, I.; Rivin, G.; Zakharchenko, D.; Olchev, A. Effect of Natural Forest Fires on Regional Weather Conditions in Siberia. Atmosphere 2020, 11, 1133. [Google Scholar] [CrossRef]
- Oshima, N.; Yukimoto, S.; Deushi, M.; Koshiro, T.; Kawai, H.; Tanaka, T.; Yoshida, K. Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. Prog. Earth Planet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Sato, K.; Inoue, J.; Yamazaki, A.; Kim, J.H.; Maturilli, M.; Dethloff, K.; Hudson, S.R.; Granskog, M.A. Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations. J. Geophys. Res. Ocean. 2017, 122, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Stock, M.; Ritter, C.; Aaltonen, V.; Aas, W.; Handorff, D.; Herber, A.; Treffeisen, R.; Dethloff, K. Where does the optically detectable aerosol in the European Arctic come from? Tellus B 2014, 66. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.K.; Shaw, G.; Andrews, E.; Dutton, E.G.; Ruoho-Airola, T.; Gong, S.L. Arctic haze: Current trends and knowledge gaps. Tellus B Chem. Phys. Meteorol. 2007, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Di Pierro, M.; Jaeglé, L.; Eloranta, E.; Sharma, S. Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012). Atmos. Chem. Phys. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Schmeisser, L.; Backman, J.; Ogren, J.; Andrews, E.; Asmi, E.; Starkweather, S.; Uttal, T.; Fiebig, M.; Sharma, S.; Eleftheriadis, K.; et al. Seasonality of aerosol optical properties in the Arctic. Atmos. Chem. Phys. Discuss. 2018, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Barrie, L.; Magnusson, E.; Brattström, G.; Leaitch, W.; Steffen, A.; Landsberger, S. A Factor and Trends Analysis of Multidecadal Lower Tropospheric Observations of Arctic Aerosol Composition, Black Carbon, Ozone, and Mercury at Alert, Canada. J. Geophys. Res. Atmos. 2019, 124, 14133–14161. [Google Scholar] [CrossRef] [Green Version]
- Udisti, R.; Bazzano, A.; Becagli, S.; Bolzacchini, E.; Caiazzo, L.; Cappelletti, D.; Ferrero, L.; Frosini, D.; Giardi, F.; Grotti, M.; et al. Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol. Rend. Lincei 2016, 27. [Google Scholar] [CrossRef]
- Lisok, J.; Markowicz, K.; Ritter, C.; Makuch, P.; Petelski, T.; Chilinski, M.; Kaminski, J.; Becagli, S.; Traversi, R.; Udisti, R.; et al. 2014 iAREA campaign on aerosol in Spitsbergen—Part 1: Study of physical and chemical properties. Atmos. Environ. 2016, 140, 150–166. [Google Scholar] [CrossRef] [Green Version]
- Breider, T.J.; Mickley, L.J.; Jacob, D.J.; Ge, C.; Wang, J.; Payer Sulprizio, M.; Croft, B.; Ridley, D.A.; McConnell, J.R.; Sharma, S.; et al. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. J. Geophys. Res. Atmos. 2017, 122, 3573–3594. [Google Scholar] [CrossRef]
- Hirdman, D.; Burkhart, J.F.; Sodemann, H.; Eckhardt, S.; Jefferson, A.; Quinn, P.K.; Sharma, S.; Ström, J.; Stohl, A. Long-term trends of black carbon and sulphate aerosol in the Arctic: Changes in atmospheric transport and source region emissions. Atmos. Chem. Phys. 2010, 10, 9351–9368. [Google Scholar] [CrossRef] [Green Version]
- Collaud Coen, M.; Andrews, E.; Alastuey, A.; Arsov, T.P.; Backman, J.; Brem, B.T.; Bukowiecki, N.; Couret, C.; Eleftheriadis, K.; Flentje, H.; et al. Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmos. Chem. Phys. 2020, 20, 8867–8908. [Google Scholar] [CrossRef]
- Grassl, S.; Ritter, C. Properties of Arctic Aerosol Based on Sun Photometer Long-Term Measurements in Ny-Ålesund. Remote Sens. 2019, 11, 1362. [Google Scholar] [CrossRef] [Green Version]
- Ritter, C.; Angeles Burgos, M.; Böckmann, C.; Mateos, D.; Lisok, J.; Markowicz, K.; Moroni, B.; Cappelletti, D.; Udisti, R.; Maturilli, M.; et al. Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015. Tellus B 2018, 70, 1–23. [Google Scholar] [CrossRef]
- Shibata, T.; Shiraishi, K.; Shiobara, M.; Iwasaki, S.; Takano, T. Seasonal Variations in High Arctic Free Tropospheric Aerosols Over Ny-Ålesund, Svalbard, Observed by Ground-Based Lidar. J. Geophys. Res. Atmos. 2018, 123, 12353–12367. [Google Scholar] [CrossRef]
- Zielinski, T.; Bolzacchini, E.; Cataldi, M.; Ferrero, L.; Graßl, S.; Hansen, G.; Mateos, D.; Mazzola, M.; Neuber, R.; Pakszys, P.; et al. Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017. Atmosphere 2020, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Tunved, P.; Ström, J.; Krejci, R. Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 2013, 13, 3643–3660. [Google Scholar] [CrossRef] [Green Version]
- Herber, A.; Thomason, L.W.; Gernandt, H.; Leiterer, U.; Nagel, D.; Schulz, K.H.; Kaptur, J.; Albrecht, T.; Notholt, J. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. Atmos. 2002, 107, AAC-6. [Google Scholar] [CrossRef]
- Ritter, C.; Neuber, R.; Schulz, A.; Markowicz, K.; Stachlewska, I.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; et al. 2014 iAREA campaign on aerosol in Spitsbergen—Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund. Atmos. Environ. 2016, 141, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tesche, M.; Zieger, P.; Rastak, N.; Charlson, R.; Glantz, P.; Tunved, P.; Hansson, H.C. Reconciling aerosol light extinction measurements from spaceborne lidar observations and in situ measurements in the Arctic. Atmos. Chem. Phys. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, L.; Cappelletti, D.; Busetto, M.; Mazzola, M.; Lupi, A.; Lanconelli, C.; Becagli, S.; Traversi, R.; Caiazzo, L.; Giardi, F.; et al. Vertical profiles of aerosol and black carbon in the Arctic: A seasonal phenomenology along 2 years (2011–2012) of field campaigns. Atmos. Chem. Phys. 2016, 16, 12601–12629. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, L.; Ritter, C.; Cappelletti, D.; Moroni, B.; Močnik, G.; Mazzola, M.; Lupi, A.; Becagli, S.; Traversi, R.; Cataldi, M.; et al. Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a closure experiment between Lidar and tethered balloon vertical profiles. Sci. Total Environ. 2019, 686, 452–467. [Google Scholar] [CrossRef] [Green Version]
- Jocher, G.; Schulz, A.; Ritter, C.; Neuber, R.; Dethloff, K.; Foken, T. The Sensible Heat Flux in the Course of the Year at Ny-Ålesund, Svalbard: Characteristics of Eddy Covariance Data and Corresponding Model Results. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Sicard, M.; Rodríguez-Gómez, A.; Comerón, A.; Muñoz-Porcar, C. Calculation of the Overlap Function and Associated Error of an Elastic Lidar or a Ceilometer: Cross-Comparison with a Cooperative Overlap-Corrected System. Sensors 2020, 20, 6312. [Google Scholar] [CrossRef]
- Zieger, P.; Fierz-Schmidhauser, R.; Gysel, M.; Ström, J.; Henne, S.; Yttri, K.E.; Baltensperger, U.; Weingartner, E. Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. 2010, 10, 3875–3890. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A. Comparative Aerosol Studies Based on Multi-Wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen. Ph.D. Thesis, Alfred Wegener Institute, Potsdam, Germany, 2011. [Google Scholar]
- Müller, K.J.; Ritter, C.; Nakoudi, K. Aerosol Investigation During the Arctic Haze Season of 2018: Optical and Hygroscopic Properties. In Proceedings of the EPJ Web Conference, Hefei, China, 24–28 June 2020; Volume 237, p. 02001. [Google Scholar]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 1992, 31, 7113–7131. [Google Scholar] [CrossRef]
- Behrendt, A.; Nakamura, T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express 2002, 10, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Giardi, F.; Traversi, R.; Becagli, S.; Severi, M.; Caiazzo, L.; Ancillotti, C.; Udisti, R. Determination of Rare Earth Elements in multi-year high-resolution Arctic aerosol record by double focusing Inductively Coupled Plasma Mass Spectrometry with desolvation nebulizer inlet system. Sci. Total Environ. 2018, 613–614, 1284–1294. [Google Scholar] [CrossRef]
- Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; et al. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes. Atmos. Environ. 2011, 45, 6788–6801. [Google Scholar] [CrossRef]
- Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys. 2013, 13, 2487. [Google Scholar] [CrossRef] [Green Version]
- Benassai, S.; Becagli, S.; Gragnani, R.; Magand, O.; Proposito, M.; Fattori, I.; Traversi, R.; Udisti, R. Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses. Ann. Glaciol. 2005, 41, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Udisti, R.; Traversi, R.; Becagli, S.; Tomasi, C.; Mazzola, M.; Lupi, A.; Quinn, P. Arctic Aerosols; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Becagli, S.; Lazzara, L.; Marchese, C.; Dayan, U.; Ascanius, S.; Cacciani, M.; Caiazzo, L.; Di Biagio, C.; Di Iorio, T.; di Sarra, A.; et al. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmos. Environ. 2016, 136, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.J. Characterisation of Arctic Aerosols on the Basis of Lidar- and Radiometer-Data. Master’s Thesis, Alfred Wegener Institute, Potsdam, Germany, 2019. [Google Scholar]
- Mazzola, M.; Tampieri, F.; Viola, A.; Lanconelli, C.; Choi, T. Stable boundary layer vertical scales in the Arctic: Observations and analyses at Ny-Ålesund, Svalbard. Q. J. R. Meteorol. Soc. 2016, 142, 1250–1258. [Google Scholar] [CrossRef]
- Gryning, S.E.; Batchvarova, E. Marine Boundary Layer And Turbulent Fluxes Over The Baltic Sea: Measurements and Modelling. Bound. Layer Meteorol. 2002, 103, 29–47. [Google Scholar] [CrossRef]
- Thomas, M.A.; Devasthale, A.; Tjernström, M.; Ekman, A.M.L. The Relation Between Aerosol Vertical Distribution and Temperature Inversions in the Arctic in Winter and Spring. Geophys. Res. Lett. 2019, 46, 2836–2845. [Google Scholar] [CrossRef] [Green Version]
- Yamanouchi, T.; Treffeisen, R.; Herber, A.; Shiobara, M.; Yamagata, S.; Hara, K.; Sato, K.; Yabuki, M.; Tomikawa, Y.; Rinke, A.; et al. Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study. Tellus B Chem. Phys. Meteorol. 2005, 57, 141–152. [Google Scholar] [CrossRef]
- Stohl, A. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Tomasi, C.; Kokhanovsky, A.A.; Lupi, A.; Ritter, C.; Smirnov, A.; O’Neill, N.T.; Stone, R.S.; Holben, B.N.; Nyeki, S.; Wehrli, C.; et al. Aerosol remote sensing in polar regions. Earth Sci. Rev. 2015, 140, 108–157. [Google Scholar] [CrossRef] [Green Version]
- Heslin-Rees, D.; Burgos, M.; Hansson, H.C.; Krejci, R.; Ström, J.; Tunved, P.; Zieger, P. From a polar to a marine environment: Has the changing Arctic led to a shift in aerosol light scattering properties? Atmos. Chem. Phys. 2020, 20, 13671–13686. [Google Scholar] [CrossRef]
- Walczowski, W.; Piechura, J. Influence of the West Spitsbergen Current on the local climate. Int. J. Climatol. 2011, 31, 1088–1093. [Google Scholar] [CrossRef]
- Nakoudi, K.; Ritter, C. AWI Cirrus Cloud Retrieval Scheme (v1.0.0). 2020. Available online: https://zenodo.org/record/4265007#.YDMGnnkRWUk (accessed on 15 February 2021).
- Nakoudi, K.; Stachlewska, I.S.; Ritter, C. An extended lidar-based cirrus cloud retrieval scheme: First application over an Arctic site. Opt. Express 2021, 20, 20. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rader, F.; Traversi, R.; Severi, M.; Becagli, S.; Müller, K.-J.; Nakoudi, K.; Ritter, C. Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. Atmosphere 2021, 12, 271. https://doi.org/10.3390/atmos12020271
Rader F, Traversi R, Severi M, Becagli S, Müller K-J, Nakoudi K, Ritter C. Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. Atmosphere. 2021; 12(2):271. https://doi.org/10.3390/atmos12020271
Chicago/Turabian StyleRader, Fieke, Rita Traversi, Mirko Severi, Silvia Becagli, Kim-Janka Müller, Konstantina Nakoudi, and Christoph Ritter. 2021. "Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data" Atmosphere 12, no. 2: 271. https://doi.org/10.3390/atmos12020271
APA StyleRader, F., Traversi, R., Severi, M., Becagli, S., Müller, K. -J., Nakoudi, K., & Ritter, C. (2021). Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. Atmosphere, 12(2), 271. https://doi.org/10.3390/atmos12020271