Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events
Abstract
:1. Introduction
- -
- geomagnetic storm on 7 January 1997,
- -
- storm on 2 April 2000, associated with the solar flare of class X20,
- -
- storm on 14 July 2000, Bastille Day Event, associated with solar flare of class X5,
- -
- storm on 28 October 2003, Halloween Solar Storms, associated with solar flare of class X17,
- -
- storm on 7 September 2005, associated with solar flare of class X1, and
- -
- storm on 17 March 2015, St. Patrick’s Day Event, associated with solar flare of class G4.
2. Data and Methods
2.1. Data Sets
2.2. Method
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otsuka, K.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; Hansen, T.; Shinagawa, M.; Kubo, Y.; Nishimura, Y.; Omori, K.; Yano, S.; et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed. Pharmacother. 2000, 55, 51–56, ISSN 0753-3322. [Google Scholar] [CrossRef]
- Azcárate, T.; Mendoza, B.; Levi, J. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24. Adv. Space Res. 2016, 58, 2116–2125, ISSN 0273-1177. [Google Scholar] [CrossRef]
- Gurfinkel, Y.; Vasin, A.L.; Pishchalnikov, R.Y.; Sarimov, R.M.; Sasonko, M.L.; Matveeva, T.A. Geomagnetic storm under laboratory conditions: Randomized experiment. Int. J. Biometeorol. 2017, 62, 501–512. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; At’kov, O.Y.; Vasin, A.L.; Breus, T.K.; Sasonko., M.L.; Pishchalnikov, R.Y. Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci. Space Res. 2016, 8, 1–7, ISSN 2214-5524. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, G.; Halberg, F.; Breus, T.; Syutkina, E.V.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmospheric Sol. Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Katsavrias, C.; Preka-Papadema, P.; Moussas, X.; Apostolou, T.; Theodoropoulou, A.; Papadima, T. Helio-geomagnetic influence in cardiological cases. Adv. Space Res. 2013, 51, 96–106, ISSN 0273-1177. [Google Scholar] [CrossRef]
- Johnsen, S.; Lohmann, K.J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 2005, 6, 703–712. [Google Scholar] [CrossRef]
- Mitsutake, G.; Otsuka, K.; Hayakawa, M.; Sekiguchi, M.; Cornelissen, G.; Halberg, F. Does Schumann resonance affect our blood pressure? Biomed. Pharmacother. 2005, 59 (Suppl. 1), S10–S14. [Google Scholar] [CrossRef] [Green Version]
- Cherry, N. Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar/Geomagnetic Activity. Nat. Hazards 2002, 26, 279–331. [Google Scholar] [CrossRef]
- Stoupel, E.; Kalediene, R.; Petrauskiene, J.; Starkuviene, S.; Abramson, E.; Israelevich, P.; Sulkes, J. Clinical Cosmobiology: Distribution of Deaths during 180 Months and Cosmophysical Activity. The Lithuanian Study, 1990–2004. The Role of Cosmic Ray; Study Report; Division of Cardiology Rabin Medical Center Tel Aviv University: Tel Aviv, Israel, 2004. [Google Scholar]
- Watanabe, Y.; Cornellissen, G.; Halberg, F.; Otsuka, K.; Ohkawa, S.I. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed. Pharmacother. 2001, 55 (Suppl. 1), 76–83. [Google Scholar] [CrossRef]
- Stoupel, E.; Kalediene, R.; Petrauskiene, J.; Starkuviene, S.; Abramson, E.; Israelevich, P.; Sulkes, J. Twenty years study of solar, geomagnetic, cosmic ray activity links with monthly deaths number (n-850304). J. Biomed. Sci. Eng. 2011, 4, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Stoupel, E. The effect of geomagnetic activity on cardiovascular parameters. Biomed. Pharmacother. 2002, 56, 247. [Google Scholar] [CrossRef] [Green Version]
- Stoupel, E.; Birk, E.; Kogan, A.; Klinger, G.; Abramson, E.; Israelevich, P.; Sulkes, J.; Linder, N. Congenital heart disease: Correlation with fluctuations in cosmophysical activity, 1995-2005. Int. J. Cardiol. 2009, 135, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Halberg, F.; Cornelissen, G.; Otsuka, K.; Watanabe, Y.; Katinas, G.; Burioka, N.; Delyukov, A.; Gorgo, Y.; Zhao, Z.; Weydahl, A.; et al. 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuro Endocrinol. Lett. 2000, 21, 233. [Google Scholar]
- Halberg, F.; Cornélissen, G.; Otsuka, K.; Fiser, B.; Mitsutake, G.; Wendt, H.; Johnson, P.; Gigolashvili, M.; Breus, T.; Sonkowsky, R.; et al. Near 10-Year and Longer Periods Modulate Circadians: Intersecting Anti-aging and Chronoastrobiological Research. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M304–M324. [Google Scholar] [CrossRef] [Green Version]
- Halberg, F.; Cornélissen, G.; Otsuka, K.; Fiser, B.; Mitsutake, G.; Wendt, H.; Johnson, P.; Gigolashvili, M.; Breus, T.; Sonkowsky, R.; et al. Incidence of sudden cardiac death, myocardial infarction and far- and near-transyears. Biomed. Pharmacother. 2005, 59, S239–S261, ISSN 0753-3322. [Google Scholar] [CrossRef]
- Dorman, L.I.; Iucci, N.; Ptitsyna, N.G.; Villoresi, G. Cosmic rays as indicator of space weather influence on frequency of infract myocardial, brain strokes, car and train accidents. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August, 2001; p. 3511. [Google Scholar]
- Ebrille, E.; Konecny, T.; Konecny, D.; Spacek, R.; Jones, P.; Ambroz, P.; DeSimone, C.V.; Powell, B.D.; Hayes, D.L.; Friedman, P.A.; et al. Correlation of Geomagnetic Activity With Implantable Cardioverter Defibrillator Shocks and Antitachycardia Pacing. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, February 2015; Volume 90, pp. 202–208. [Google Scholar]
- Podolská, K. The Impact of Ionospheric and Geomagnetic Changes on Mortality from Diseases of the Circulatory System. J. Stroke Cerebrovasc. Dis. 2018, 27, 404–417. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Preka-Papadema, P.; Theodoropoulou, A.; Paouris, E.; Apostolou, T. A study of the possible relation of the cardiac arrhythmias occurrence to the polarity reversal of the solar magnetic field. Adv. Space Res. 2017, 59, 366–378. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Milvidaite, I.; Kubilius, R.; Stasionyte, J. The effect of solar–geomagnetic activity during hospital admission on coronary events within 1 year in patients with acute coronary syndromes. Adv. Space Res. 2013, 52, 2192–2198. [Google Scholar] [CrossRef]
- Vencloviene, J.; Antanaitiene, J.; Babarskiene, R. The association between space weather conditions and emergency hospital admissions for myocardial infarction during different stages of Solar activity. J. Atmospheric Sol. Terr. Phys. 2016, 149, 52–58. [Google Scholar] [CrossRef]
- Jaruševičius, G.; Rugelis, T.; McCraty, R.; Landauskas, M.; Berškienė, K.; Vainoras, A. Correlation between Changes in Local Earth’s Magnetic Field and Cases of Acute Myocardial Infarction. Int. J. Environ. Res. Public Health. 2018, 15, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geronikolou, S.; Leontitsis, A.; Petropoulos, V.; Davos, C.; Cokkinos, D.; Chrousos, G. Cyclic stroke mortality variations follow sunspot patterns. F1000Research 2020, 9, 1088. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Radisauskas, R.; Vaiciulis, V.; Kiznys, D.; Bernotiene, G.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A. Associations between Quasi-biennial Oscillation phase, solar wind, geomagnetic activity, and the incidence of acute myocardial infarction. Int. J. Biometeorol. 2020, 64, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Kiznys, D.; Vencloviene, J.; Milvidaite, I. The associations of geomagnetic storms, fast solar wind, and stream interaction regions with cardiovascular characteristic in patients with acute coronary syndrome. Life Sci. Space Res. 2020, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.; Slapikas, R.; Sakalyte, G. The association between phenomena on the sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int. J. Biometeorol. 2013, 57, 797–804. [Google Scholar] [CrossRef]
- Pishchalnikov, R.Y.; Gurfinkel, Y.I.; Sarimov, R.M.; Vasin, A.L.; Sasonko, M.L.; Matveeva, T.A.; Binhi, V.N.; Baranov, M.V. Cardiovascular response as a marker of environmental stress caused by variations in geomagnetic field and local weather. Biomed. Signal Process. Control. 2019, 51, 401–410. [Google Scholar] [CrossRef]
- ÚZIS ČR: Czech Health Statistics Yearbook 2015; ÚZIS ČR: Prague, Czech Republic, 2016.
- Cífková, R.; Škodová, Z.; Bruthans, J.; Holub, J.; Adámková, V.; Jozífová, M.; Galovcová, M.; Wohlfahrt, P.; Krajčoviechová, A.; Petržílková, Z.; et al. Longitudinal trends in cardiovascular mortality and blood pressure levels, prevalence, awareness, treatment, and control of hypertension in the Czech population from 1985 to 2007/2008. J. Hypertens. 2010, 28, 2196–2203. [Google Scholar] [CrossRef]
- Cífková, R.; Bruthans, J.; Wohlfahrt, P.; Krajčoviechová, A.; Šulc, P.; Jozífová, M.; Eremiášová, L.; Pudil, J.; Linhart, A.; Widimský, J.; et al. 30-year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post-MONICA, 1985-2016/17. PLoS ONE 2020, 15, e0232845. [Google Scholar] [CrossRef]
- Cífková, R.; Bruthans, J.; Wohlfahrt, P.; Krajčoviechová, A.; Šulc, P.; Eremiášová, L.; Pudil, J.; Linhart, A.; Widimský, J.; Filipovský, J.; et al. The prevalence of major cardiovascular risk factors in the Czech population in 2015–2018. The Czech post-MONICA study. COR ET VASA 2020, 62, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Bruthans, J.; Cífková, R.; Lánská, V.; O’Flaherty, M.; Critchley, J.A.; Holub, J.; Janský, P.; Zvárová, J.; Capewell, S. Explaining the decline in coronary heart disease mortality in the Czech Republic between 1985 and 2007. Eur. J. Prev. Cardiol. 2014, 21, 829–839. [Google Scholar] [CrossRef]
- Poppová, M. IRIS: Language-Independent Software for Coding Causes of Death—Implementation in Czech Republic. IRIS: Jazykově nezávislý software pro kódování příčin smrti—implementace v ČR. Demografie 2011, 53, 392–396. [Google Scholar]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Whittaker, J. Graphical Models in Applied Multivariate Statistics; Wiley: New York, NY, USA, 1990; pp. 182–185. [Google Scholar]
- Tsonis, A.; Roebber, P. The architecture of the climate network. Physica A 2004, 333, 497–504. [Google Scholar] [CrossRef]
- Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate networks. Res. Rep. 2010. Available online: http://smartech.gatech.edu/handle/1853/36564 (accessed on 11 July 2019).
- Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate research using graphical models. J. Clim. 2012. [Google Scholar] [CrossRef] [Green Version]
- Bannerjee, A. Probabilistic graphical models for climate data analysis, paper presented at Supercomputing Workshop on Climate Knowledge Discovery (CKD-SC11). IEEE Comput. Soc. Seattle Wash 2011. [Google Scholar] [CrossRef]
- Lauritzen, S.L. Graphical Models; Oxford Science Publications: New York, NY, USA, 1996; ISBN 0-19-852219-3. [Google Scholar]
- Buhl, S. On the existence of maximum likelihood estimators for graphical Gaussian models. Scand. J. Statist. 1993, 20, 263–270. [Google Scholar]
- Cramer, E. Conditional iterative proportional fitting for Gaussian distributions. J. Multivar. Anal. 1998, 65, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.I. Graphical models. Stat. Sci. 2004, 19, 140–155. [Google Scholar] [CrossRef]
- Koller, D.; Friedman, N. Probabilistic Graphical Models–Principles and Techniques, 1st ed.; MIT Press: Cambridge, MA, USA, 2009; 1280, ISBN 978-0-262-01319-2. [Google Scholar]
- Edwards, D. Introductions to Graphical Modeling, 2nd ed.; Includes MIM software; Springer: New York, NY, USA, 2000; ISBN 978-1-4612-0493-0. [Google Scholar]
Solar Storm X20 2. 4. 2000 | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.39173 | X | - | - | 1 | 19 | 0.42729 |
Males 40+ | 6.95752 | X | - | - | 1 | 2130 | 0.07649 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 10.40900 | - | X | - | 1 | 2592 | 0.05259 | |
post-SEP | Males 0–39 | 0.53677 | - | X | X | 2 | 14 | 0.59183 |
Males 40+ | 8.92773 | - | - | X | 1 | 2157 | 0.29049 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 9.34790 | X | X | X | 3 | 2552 | 0.09196 | |
Solar Storm X5 14. 7. 2000 Bastille Day Event | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.45956 | - | - | - | 0 | 18 | 0.20801 |
Males 40+ | 4.66419 | X | X | - | 2 | 2022 | 0.32352 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 10.48047 | - | X | - | 1 | 2353 | 0.19218 | |
post-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 6.29273 | X | X | X | 3 | 2060 | 0.17833 | |
Females 0–39 | 0.32790 | - | X | - | 1 | 5 | 0.73121 | |
Females 40+ | 9.00699 | X | - | - | 1 | 2506 | 0.06246 | |
Solar Storm X17 28. 10. 2003 Halloween Solar Storms | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.79365 | - | - | X | 1 | 14 | 0.11818 |
Males 40+ | 9.65696 | X | - | X | 2 | 2099 | 0.10864 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 7.51426 | - | X | X | 2 | 2504 | 0.13221 | |
Post-SEP | Males 0–39 | 0.46596 | X | - | X | 2 | 18 | 0.28350 |
Males 40+ | 8.08860 | - | - | X | 1 | 2022 | 0.06981 | |
Females 0–39 | 0.10372 | X | - | X | 2 | 5 | 0.96414 | |
Females 40+ | 8.71907 | X | X | X | 3 | 2486 | 0.09763 | |
Solar storm G4 17. 3. 2015 St. Patrick’s Day Event | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.51687 | - | X | - | 1 | 15 | 0.58620 |
Males 40+ | 8.47747 | - | X | - | 1 | 2165 | 0.22743 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 11.09207 | - | X | X | 2 | 2630 | 0.14064 | |
post-SEP | Males 0–39 | 0.81789 | - | - | - | 0 | 13 | 0.06826 |
Males 40+ | 8.40326 | X | - | X | 2 | 2105 | 0.03101 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 10.39334 | X | - | - | 1 | 2626 | 0.09645 | |
Geomagnetic Storm 7. 1. 1997 | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.55183 | X | - | - | 1 | 24 | 0.39096 |
Males 40+ | 9.94229 | - | - | X | 1 | 2645 | 0.07866 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 12.05380 | - | - | - | 0 | 3242 | 0.34611 | |
post-SEP | Males 0–39 | 0.66147 | - | - | - | 0 | 19 | 0.19784 |
Males 40+ | 9.35528 | X | - | X | 2 | 2832 | 0.15772 | |
Females 0–39 | 0.44512 | - | X | - | 1 | 11 | 0.21298 | |
Females 40+ | 8.47768 | X | X | - | 2 | 3451 | 0.26471 | |
Solar Storm X1 7. 9. 2005 | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.48520 | - | X | - | 1 | 17 | 0.13589 |
Males 40+ | 6.94077 | X | - | X | 2 | 1891 | 0.19869 | |
Females 0–39 | 0.57300 | X | - | - | 1 | 6 | 0.75376 | |
Females 40+ | 8.80343 | - | - | - | 0 | 2411 | 0.03672 | |
post-SEP | Males 0–39 | 0.44756 | X | - | X | 2 | 15 | 0.24884 |
Males 40+ | 7.22565 | - | X | - | 1 | 1830 | 0.10777 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 8.48815 | - | X | X | 2 | 2418 | 0.33089 |
Solar Storm X20 2. 4. 2000 | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 1.07044 | X | - | - | 1 | 41 | 0.42592 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.08955 | X | - | - | 1 | 59 | 0.05020 | |
post-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 0.91944 | - | X | - | 1 | 49 | 0.36229 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 0.90085 | - | - | - | 0 | 40 | 0.04259 | |
Solar Storm X5 14. 7. 2000 Bastille Day Event | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.37939 | - | - | X | 1 | 4 | 0.59697 |
Males 40+ | 1.03645 | - | - | - | 0 | 40 | 0.03595 | |
Females 0–39 | 0.50603 | - | X | X | 2 | 10 | 0.71090 | |
Females 40+ | 1.29253 | - | - | X | 1 | 48 | 0.29219 | |
post-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 1.12680 | - | X | - | 1 | 46 | 0.26918 | |
Females 0–39 | 0.37453 | - | X | - | 1 | 6 | 0.43892 | |
Females 40+ | 1.23286 | - | - | - | 0 | 55 | 0.01914 | |
Solar Storm X17 28. 10. 2003 Halloween Solar Storms | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 1.69986 | - | X | - | 1 | 73 | 0.28285 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.44453 | - | - | - | 0 | 90 | 0.17493 | |
post-SEP | Males 0–39 | 0.71428 | X | - | X | 2 | 12 | 0.37100 |
Males 40+ | 1.10720 | X | - | X | 2 | 65 | 0.21850 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 2.12049 | X | - | X | 2 | 77 | 0.21858 | |
Solar Storm G4 17. 3. 2015 St. Patrick’s Day Event | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 1.13831 | - | X | - | 1 | 109 | 0.44890 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 2.25342 | - | - | - | 0 | 150 | 0.05455 | |
post-SEP | Males 0–39 | does not pass the test for normality and independence of logarithmic data | ||||||
Males 40+ | 1.55689 | X | - | X | 2 | 110 | 0.11307 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.99264 | X | - | - | 1 | 138 | 0.14996 | |
Geomagnetic Storm 7. 1. 1997 | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.47441 | X | - | - | 1 | 9 | 0.20424 |
Males 40+ | 0.91364 | - | - | - | 0 | 42 | 0.01490 | |
Females 0–39 | 0.29791 | - | X | X | 2 | 6 | 0.77812 | |
Females 40+ | 0.90116 | - | - | - | 0 | 48 | 0.16517 | |
post-SEP | Males 0–39 | 1.03767 | - | - | - | 0 | 12 | 0.04059 |
Males 40+ | 1.08709 | - | - | - | 0 | 38 | 0.04656 | |
Females 0–39 | 0.34000 | - | - | X | 1 | 9 | 0.36421 | |
Females 40+ | 0.92175 | - | - | X | 1 | 53 | 0.21651 | |
Solar Storm X1 7. 9. 2005 | ||||||||
Model | Deviance of Minimized Graphical Model | F10.7 | Kp | PF30 | Edge Number of Minimized Graphical Model | f | p-Value | |
pre-SEP | Males 0–39 | 0.32717 | X | - | - | 1 | 12 | 0.62536 |
Males 40+ | 1.42960 | - | X | - | 1 | 76 | 0.14286 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.38646 | - | X | - | 1 | 86 | 0.13949 | |
post-SEP | Males 0–39 | 0.31714 | X | - | - | 1 | 9 | 0.44683 |
Males 40+ | 1.03411 | - | - | - | 0 | 66 | 0.03584 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.87765 | X | - | - | 1 | 97 | 0.32962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podolská, K. Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events. Atmosphere 2021, 12, 203. https://doi.org/10.3390/atmos12020203
Podolská K. Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events. Atmosphere. 2021; 12(2):203. https://doi.org/10.3390/atmos12020203
Chicago/Turabian StylePodolská, Kateřina. 2021. "Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events" Atmosphere 12, no. 2: 203. https://doi.org/10.3390/atmos12020203
APA StylePodolská, K. (2021). Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events. Atmosphere, 12(2), 203. https://doi.org/10.3390/atmos12020203