Estimating Background Values of Potentially Toxic Elements Accumulated in Moss: A Case Study from Switzerland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Background Sites and Moss Sampling
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Loppi, S.; Corsini, A.; Paoli, L. Estimating environmental contamination and element deposition at an urban area of Central Italy. Urban Sci. 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Loppi, S. Lichens as sentinels for air pollution at remote alpine areas (Italy). Environ. Sci. Pollut. Res. 2014, 21, 2563–2571. [Google Scholar]
- Loppi, S.; Pirintsos, S.A. Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ. Pollut. 2003, 121, 327–332. [Google Scholar] [CrossRef]
- Keddy, P.A. Biological monitoring and ecological prediction: From nature reserve management to national state of the environment indicators. In Monitoring for Conservation and Ecology; Goldsmith, F.B., Ed.; Chapman & Hall: London, UK, 1991; pp. 249–267. [Google Scholar]
- Rühling, A.; Tyler, G. An ecological approach to the lead problem. Bot. Not. 1968, 121, 321–342. [Google Scholar]
- Beeby, A. What do sentinels stand for? Environ. Pollut. 2001, 112, 285–298. [Google Scholar] [CrossRef]
- Rühling, A. Atmospheric Heavy Metal Deposition in Europe—Estimation Based on Moss Analysis; NORD 1994:9; Nordic Council of Ministers: Copenhagen, Denmark, 1994. [Google Scholar]
- Harmens, H.; Mills, G.; Norris, D.A.; Sharps, K. Twenty eight years of ICP Vegetation: An overview of its activities. Ann. Bot. 2015, 5, 31–43. [Google Scholar]
- Boquete, M.T.; Aboal, J.R.; Carballeira, A.; Fernandez, J.A. Do mosses exist outside Europe? A biomonitoring reflection. Sci. Total Environ. 2017, 593–594, 567–570. [Google Scholar]
- FOEN—Federal Office for the Environment. Deposition of Atmospheric Pollutants in Switzerland; FOEN: Bern, Switzerland, 2018. [Google Scholar]
- Carballeira, A.; Couto, J.A.; Fernandez, J.A. Estimation of background levels of various elements in terrestrial mosses from GAlicia (NW Spain). Water Air Soil Pollut. 2002, 133, 235–252. [Google Scholar] [CrossRef]
- Gutersohn, H. Naturräumliche Gliederung. In Atlas Der Schweiz; Eidg. Landestopographie: Wabern-Bern, Switzerland, 1973. [Google Scholar]
- ICP Vegetation. Heavy Metals, Nitrogen and POPs in European Mosses: 2015 Survey. Monitoring Manual. 2015. Available online: http://icpvegetation.ceh.ac.uk (accessed on 27 July 2015).
- Pennock, D.J.; Appleby, P.G. Site selection and sampling design. In Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides; Zapata, F., Ed.; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; Dam, M.; et al. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef] [PubMed]
- Steinnes, E.; Rühling, Å.; Lippo, H. Reference materials for large-scale metal deposition surveys. Accredit. Qual. Assur. 1997, 2, 243–249. [Google Scholar] [CrossRef]
- Colinet, E.; Griepink, B.; Muntau, H. Certification of the Contents of Cadmium, Copper, Manganese, Mercury, Lead and Zinc in Two Plant Materials of Aquatic Origin (BCR Numbers 60 and 61) and in Olive Leaves (BCR Number 62); European Commission: Brussels, Belgium, 1982. [Google Scholar]
- Siewers, U.; Herpin, U. Schwermetalleinträge in Deutschland—Moos-Monitoring 1995/96; BGR: Hannover, Germany, 1998. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: London, UK, 1977. [Google Scholar] [CrossRef]
- DiCiccio, T.J.; Efron, B. Bootstrap confidence intervals. Stat. Sci. 1996, 11, 189–228. [Google Scholar]
- Good, P. Permutation, Parametric and Bootstrap Tests of Hypotheses, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Micó, C.; Peris, M.; Recatalá, L.; Sánchez, J. Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Sci. Total Environ. 2007, 378, 13–17. [Google Scholar] [CrossRef]
- Spatharis, S.; Tsirtsis, G. Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean. Ecol. Indic. 2010, 10, 840–847. [Google Scholar] [CrossRef]
- Cecconi, E.; Fortuna, L.; Benesperi, R.; Bianchi, E.; Brunialti, G.; Contardo, T.; Di Nuzzo, L.; Frati, L.; Monaci, F.; Munzi, S.; et al. New interpretative scales for lichen bioaccumulation data: The Italian proposal. Atmosphere 2019, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Loppi, S. On the way of expressing bioaccumulation data: Does the choice of the metric really determine the outcome? In Proceedings of the 33rd Task Force Meeting of the ICP Vegetation, Riga, Latvia, 27–30 January 2019; Volume 37. [Google Scholar]
- Contardo, T.; Vannini, A.; Sharma, K.; Giordani, P.; Loppi, S. Disentangling air pollution sources in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere 2020. [Google Scholar] [CrossRef]
- Zechmeister, H. Annual growth of four pleurocarpous moss species and their applicability for biomonitoring heavy metals. Environ. Monit. Assess. 1998, 52, 441–451. [Google Scholar] [CrossRef]
- Travnikov, O.; Batrakovam, N.; Gusev, A.; Ilyin, I.; Kleimenov, M.; Rozovskaya, O.; Shatalov, V.; Strijkina, I.; Aas, W.; Breivik, K.; et al. Assessment of Transboundary Pollution by Toxic Substances: Heavy Metals and POPs. Available online: https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf (accessed on 28 January 2021).
- Aboal, J.R.; Fernandez, J.A.; Boquete, T.; Carballeira, A. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci. Total Environ. 2010, 408, 6291–6297. [Google Scholar] [CrossRef]
- Gjengendal, E.; Steinnes, E. Uptake of metal ions in moss from artificial precipitation. Environ. Monit. Assess. 1990, 14, 77–87. [Google Scholar] [CrossRef] [PubMed]
Cd | Cu | Pb | Zn | |||||
---|---|---|---|---|---|---|---|---|
Median | c.l. | Median | c.l. | Median | c.l. | Median | c.l. | |
1990 | 0.20 a | 0.13–0.36 | 4.5 ad | 3.7–6.4 | 14.4 a | 9.5–22.2 | 34.6 | 22.1–38.1 |
1995 | 0.18 a | 0.12–0.28 | 4.8 a | 4.0–6.4 | 5.6 b | 3.2–7.3 | 30.9 | 23.0–48.6 |
2000 | 0.12 bc | 0.09–0.14 | 7.5 bc | 5.3–9.6 | 1.7 c | 1.3–1.8 | 29.9 | 23.5–38.6 |
2005 | 0.10 cd | 0.07–0.15 | 5.9 abcd | 4.8–7.1 | 1.7 c | 0.9–1.8 | 31.4 | 25.6–36.6 |
2010 | 0.08 de | 0.06–0.10 | 6.4 cd | 5.4–7.1 | 1.3 c | 0.8–1.5 | 22.8 | 19.9–30.4 |
2015 | 0.07 e | 0.04–0.10 | 4.9 ad | 4.1–6.5 | 1.2 c | 0.7–1.9 | 23.2 | 19.8–32.4 |
whole period | 0.11 | 0.09–0.13 | 5.6 | 5.0–6.4 | 1.7 | 1.5–2.6 | 25.6 | 24.3–32 |
PTE | Region | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|---|
J | 1.0 | 0.9 | 1.5 | 1.0 | 1.3 | 1.2 | |
P | 0.9 | 0.9 | 1.6 | 1.2 | 1.3 | 1.4 | |
Cd | NA | 0.9 | 0.9 | 1.0 | 1.0 | 1.2 | 1.0 |
CA | 0.6 | 0.5 | 0.6 | 0.6 | 0.6 | 0.7 | |
SA | 1.6 | 1.4 | 1.6 | 1.7 | 1.8 | 1.4 | |
J | 0.7 | 0.7 | 0.4 | 0.7 | 0.6 | 0.7 | |
P | 0.6 | 0.6 | 0.4 | 0.6 | 0.5 | 0.7 | |
Cu | NA | 0.6 | 0.6 | 0.6 | 0.9 | 0.7 | 0.7 |
CA | 0.7 | 0.8 | 0.5 | 0.7 | 0.8 | 0.7 | |
SA | 1.4 | 1.2 | 0.8 | 1.1 | 0.8 | 1.0 | |
J | 0.7 | 0.8 | 1.6 | 1.8 | 1.6 | 1.2 | |
P | 0.7 | 0.8 | 2.0 | 1.9 | 1.3 | 1.3 | |
Pb | NA | 0.7 | 0.9 | 1.3 | 1.3 | 1.7 | 1.0 |
CA | 0.7 | 0.7 | 1.0 | 1.0 | 0.8 | 0.6 | |
SA | 2.0 | 3.7 | 5.0 | 5.1 | 2.9 | 2.1 | |
J | 0.8 | 0.5 | 0.7 | 0.7 | 0.8 | 0.7 | |
P | 0.9 | 0.6 | 0.6 | 1.0 | 0.7 | 0.9 | |
Zn | NA | 0.8 | 0.7 | 0.8 | 0.9 | 0.8 | 0.7 |
CA | 0.9 | 0.6 | 0.6 | 0.8 | 0.8 | 0.8 | |
SA | 1.8 | 1.2 | 1.2 | 1.5 | 1.3 | 1.2 |
PTE | Region | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|---|
J | 1.7 | 1.0 | 0.8 | 0.7 | 0.5 | 0.5 | |
P | 2.6 | 1.8 | 1.8 | 1.4 | 1.0 | 1.1 | |
Cd | NA | 2.6 | 1.9 | 1.1 | 1.1 | 0.9 | 0.8 |
CA | 1.7 | 1.0 | 0.7 | 0.7 | 0.5 | 0.5 | |
SA | 4.4 | 2.9 | 1.8 | 1.9 | 1.4 | 1.1 | |
J | 0.7 | 0.7 | 0.6 | 0.8 | 0.7 | 0.7 | |
P | 0.6 | 0.6 | 0.6 | 0.7 | 0.6 | 0.7 | |
Cu | NA | 0.6 | 0.6 | 0.9 | 1.0 | 0.8 | 0.7 |
CA | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | |
SA | 1.4 | 1.2 | 1.2 | 1.3 | 0.9 | 1.0 | |
J | 6.2 | 2.3 | 1.1 | 1.2 | 0.9 | 0.8 | |
P | 5.7 | 2.3 | 1.4 | 1.3 | 0.8 | 0.9 | |
Pb | NA | 5.8 | 2.5 | 0.9 | 0.9 | 1.0 | 0.7 |
CA | 5.7 | 2.1 | 0.7 | 0.7 | 0.5 | 0.4 | |
SA | 17.3 | 10.3 | 3.5 | 3.5 | 1.7 | 1.5 | |
J | 0.9 | 0.8 | 0.8 | 0.7 | 0.8 | 0.7 | |
P | 1.1 | 0.9 | 0.8 | 1.2 | 0.6 | 0.9 | |
Zn | NA | 1.0 | 1.0 | 0.9 | 1.0 | 0.7 | 0.7 |
CA | 1.1 | 0.8 | 0.8 | 0.9 | 0.7 | 0.8 | |
SA | 2.1 | 1.9 | 1.4 | 1.7 | 1.3 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loppi, S.; Kosonen, Z.; Meier, M. Estimating Background Values of Potentially Toxic Elements Accumulated in Moss: A Case Study from Switzerland. Atmosphere 2021, 12, 177. https://doi.org/10.3390/atmos12020177
Loppi S, Kosonen Z, Meier M. Estimating Background Values of Potentially Toxic Elements Accumulated in Moss: A Case Study from Switzerland. Atmosphere. 2021; 12(2):177. https://doi.org/10.3390/atmos12020177
Chicago/Turabian StyleLoppi, Stefano, Zaida Kosonen, and Mario Meier. 2021. "Estimating Background Values of Potentially Toxic Elements Accumulated in Moss: A Case Study from Switzerland" Atmosphere 12, no. 2: 177. https://doi.org/10.3390/atmos12020177
APA StyleLoppi, S., Kosonen, Z., & Meier, M. (2021). Estimating Background Values of Potentially Toxic Elements Accumulated in Moss: A Case Study from Switzerland. Atmosphere, 12(2), 177. https://doi.org/10.3390/atmos12020177