Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Heat Days
3.2. Universal Thermal Climate Index (UTCI)
3.3. Circulation Conditions
3.4. Case Study of 18–28 July 2006 and 2–5 July 2015 Heat Waves
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WMO. The Global Climate 2015–2019. World Meteorological Organization. 2019. Available online: https://library.wmo.int/ (accessed on 19 November 2020).
- IPCC. Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. International Panel on Climate Change. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 19 November 2020).
- Twardosz, R.; Kossowska-Cezak, U. Exceptionally hot summers in Central and Eastern Europe (1951–2010). Theor. Appl. Climatol. 2013, 112, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and tropospheric anomalies of temperature and geopotential heights. Int. J. Climatol. 2019, 39, 4189–4205. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heat waves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Stefanon, M.; D’Andrea, F.; Drobinski, F. Heat wave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 014023. [Google Scholar] [CrossRef]
- Wibig, J. Heat waves in Poland in the period 1951–2015: Trends, patterns and driving factors. Meteorol. Hydrol. Water Manag. 2018, 6, 37–45. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Półrolniczak, M.; Kolendowicz, L. Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theor. Appl. Climatol. 2018, 137, 1909–1923. [Google Scholar] [CrossRef] [Green Version]
- Della-Marta, P.M.; Beniston, M. Summer Heat Waves in Western Europe, Their Past Change and Future Projections. In Climate Variability and Extremes during the Past 100 Years; Brönnimann, S., Luterbacher, J., Ewen, T., Diaz, H.F., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 33, pp. 235–250. [Google Scholar]
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario; Office for Official Publications of the European Communities: Luxembourg, 2008; p. 66. [Google Scholar]
- Tomczyk, A.M.; Sulikowska, A. Heat waves in lowland Germany and their circulation-related conditions. Meteorol. Atmos. Phys. 2017, 130, 1–17. [Google Scholar] [CrossRef]
- Zacharias, S.; Koppe, C.; Mücke, H.-G. Climate Change Effects on Heat Waves and Future Heat Wave-Associated IHD Mortality in Germany. Climate 2015, 3, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Black, E.; Blackburn, M.; Harrison, G.; Hoskins, B.; Methven, J. Factors contributing to the summer 2003 European heat wave. Weather 2004, 59, 217–223. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Diaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–300. [Google Scholar] [CrossRef]
- Poumadere, M.; Mays, C.; Blong, R.J.; Le Mer, S. The 2003 Heat Wave in France: Dangerous Climate Change Here and Now. Risk Anal. 2006, 25, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- De Bono, A.; Giuliani, G.; Kluser, S.; Peduzzi, P. Impacts of Summer 2003 Heat Wave in Europe. Environment Alert Bulletin, UNEP. 2004. Available online: https://www.unisdr.org (accessed on 19 November 2020).
- Rebetez, M.; Dupond, O.; Gailard, M.G. An analysis of the July 2006 heat wave extent in Europe compared to the record year of 2003. Theor. Appl. Climatol. 2009, 95, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chiriaco, M.; Bastin, S.; Yiou, P.; Haeffelin, M.; Dupont, J.-C.; Stéfanon, M. European heat wave in July 2006: Observations and modeling showing how local processes amplify conducive large-scale conditions. Geophys. Res. Lett. 2014, 41, 5644–5652. [Google Scholar] [CrossRef] [Green Version]
- Morignat, E.; Perrin, J.-B.; Gay, E.; Vinard, J.-L. Assessment of the Impact of the 2003 and 2006 Heat Waves on Cattle Mortality in France. PLoS ONE 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Overcenco, A.V.; Potopová, V. Summer Heat Episodes in Central and Eastern Europe: Czech Republic and Republic of Moldova case. Conference: Bioklima 2010. 2010. Available online: https://www.researchgate.net/publication/236005181 (accessed on 11 December 2020).
- Potopová, V.; Türkott, L. Poisson Modelling of the Heat Waves and Tropical Days in the Czech Republic. 2009. Available online: https://www.researchgate.net/profile/Vera_Potopova/publication (accessed on 11 December 2020).
- Sulikowska, A.; Wypych, A.; Woszczek, I. Fale upałów latem 2015 roku i ich uwarunkowania cyrkulacyjne (The 2015 summer heat waves in Poland and their synoptic background). Badania Fizjograficzne VII Seria A Geografia Fizyczna 2016, 67, 205–223. [Google Scholar]
- Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochnicek, O. The extreme European summer of 2015 in a long-term perspective. Int. J. Climatol. 2017, 37, 943–962. [Google Scholar] [CrossRef]
- Muthers, S.; Laschewski, G.; Matzarakis, A. The summers 2003 and 2015 in South-West Germany: Heat waves and heat-related mortality in the context of climate change. Atmosphere 2017, 8, 224. Available online: https://www.mdpi.com/2073-4433/8/11/224 (accessed on 20 November 2020). [CrossRef] [Green Version]
- Urban, A.; Hanzlikova, H.; Kysely, J.; Plavcova, E. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves. Int. J. Environ. Res. Public Health 2017, 14, 1562. Available online: https://www.mdpi.com/1660-4601/14/12/1562 (accessed on 20 November 2020). [CrossRef] [Green Version]
- Dong, B.; Sutton, R.; Shaffrey, L.; Wilcox, L. The 2015 European Heat Wave, in Explaining Extremes of 2015 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2016, 97, 57–62. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Wereski, S.; Demczuk, P. Biometeorological conditions during an extreme heat wave event in Poland in August 2015. Weather 2019. [Google Scholar] [CrossRef]
- Kornhuber, K.; Ospray, S.; Coumou, D.; Petri, S.; Petoukhov, V.; Rahmstorf, S.; Gray, L. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 2019, 14, 054002. [Google Scholar] [CrossRef]
- Rösner, B.; Imme, B.; van Heerwaarden, C.C.; Weerts, A.; Hazeleger, W.; Bissoli, P.; Trachte, K. The long heat wave and drought in Europe in 2018. In: State of the Climate in 2018. Bull. Am. Meteorol. Soc. 2019, 100, 222–223. [Google Scholar]
- Tomczyk, A.M.; Bednorz, E. The extreme year-analysis of thermal conditions in Poland in 2018. Theor. Appl. Climatol. 2020, 139, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Miszuk, B. Intensity of heat stress in 2015 and 2018 summer seasons in the region of the Lower Silesia (Poland). Misc. Geogr. 2020, 24, 3. Available online: https://content.sciendo.com (accessed on 20 November 2020).
- Xu, P.; Wang, L.; Liu, Y.; Chen, W.; Huang, P. The record-breaking heat wave of June 2019 in Central Europe. Atmos. Sci. Lett. 2020, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhao, N.; Chen, S. The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere 2020, 11, 524. [Google Scholar] [CrossRef]
- Twardosz, R.; Wałach, P. Niezwykle ciepła pogoda w czerwcu 2019 roku w Polsce i jej przyczyny cyrkulacyjne (Unusually hot June 2019 in Poland and its circulation related causes). Przegl. Geofiz. 2020. Available online: http://ptgeof.imgw.pl/?strona=5,19 (accessed on 23 November 2020).
- Ragettli, M.S.; Schindler, C.; Röösli, M. Excess mortality during the warm summer of 2015 in Switzerland. Swiss. Med. Wkly. 2017, 146, 14379. [Google Scholar]
- Zaninović, K.; Matzarakis, A. Impact of heat waves on mortality in Croatia. Int. J. Biometeorol. 2014, 58, 1135–1145. [Google Scholar] [CrossRef]
- Gabriel, K.; Endlicher, W. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
- Robine, J.M.; Cheung, S.L.; Le Roy, S.; Van Oyen, H.; Griffiths, C.E.; Michel, J.-P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Vyberci, D.; Svec, M.; Fasko, P.; Savinova, H.; Trizna, M.; Micietova, E. The effects of the 1996–2012 summer heat events on human mortality in Slovakia. Morav. Geogr. Rep. 2015, 23, 58–70. [Google Scholar]
- Graczyk, D.; Kundzewicz, Z.W.; Choryński, A.; Førland, E.J.; Pińskwar, I.; Szwed, M. Heat-related mortality during hot summers in Polish cities. Theor. Appl. Climatol. 2019, 136, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Austria, P.; Bandala, E.R. Heat Waves: Health Effects, Observed Trends and Climate Change. In Extreme Weather; Sallis, J., Ed.; Books on Demand: Norderstedt, Germany, 2018; pp. 107–123. [Google Scholar]
- Plavcová, E.; Kyselý, J. Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim. Dyn. 2016, 46, 2805–2820. [Google Scholar] [CrossRef]
- Półrolniczak, M.; Szyga, K.; Koelndowicz, L. Bioclimate of the chosen cities in the Polish Baltic Coast based on Universal Thermal Climate Index. Acta Geogr. Lodz. 2016, 104, 147–161. [Google Scholar]
- Kolendowicz, L.; Połrolniczak, M.; Szyga-Pluta, K.; Bednorz, E. Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theor. Appl. Climatol. 2018, 134, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Owczarek, M. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theor. Appl. Climatol. 2020, 139, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, A. Changing thermal bioclimate in some Hungarian cities. Acta Climatol. Chorol. Univ. Szeged. 2011, 44–45, 93–101. [Google Scholar]
- Bleta, A.; Nastos, P.T.; Matzarakis, A. Assessment of bioclimatic conditions on Crete Island, Greece. Reg. Environ. Chang. 2014, 14, 1967–1981. [Google Scholar] [CrossRef]
- Pecelj, M.; Đorđević, A.; Pecelj, M.R.; Pecelj-Purković, J.; Filipović, D.; Šećerov, V. Biothermal conditions on Mt. Zlatibor based on thermophysiological indices. Arch. Biol. Sci. 2017, 69, 455–461. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Capecchi, V.; Modesti, P.A.; Gensini, G.F.; Orlandini, S. Environmental temperature and thermal indices: What is the most effective predictor of heat-related mortality in different geographical contexts? Sci. World J. 2014, 2014, 961750. [Google Scholar] [CrossRef]
- Novak, M. Use of the UTCI in the Czech Republic. Geogr. Pol. 2013, 86, 21–28. [Google Scholar] [CrossRef]
- Urban, A.; Kisely, J. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int. J. Environ. Res. Public Health 2014, 11, 952–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzarakis, A.; Muthers, S.; Rutz, F. Application and comparison of UTCI and PET in temperate climate conditions. Finisterra 2014, 49, 21–31. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Kunert, A. Bioklimatyczne Uwarunkowania Rekreacji i Turystyki w Polsce (Bioclimatic Principles of Recreation and Tourism in Poland); Polish Academy of Sciences S. Leszczycki Institute of Geography and Spatial Organization: Warsaw, Poland, 2011; p. 365. [Google Scholar]
- Błażejczyk, A.; Błażejczyk, K.; Baranowski, J.; Kuchcik, M. Heat stress mortality and desired adaptation responses of healthcare system in Poland. Int. J. Biometeorol. 2018, 62, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Kuchcik, M.; Błażejczyk, K.; Szmyd, J.; Milewski, P.; Błażejczyk, A.; Baranowski, J. Potencjał Leczniczy Klimatu Polski (The Therapeutic Potential of the Polish Climate); IGIPZ PAN, Wydawnictwo Akademickie Sedno: Warsaw, Poland, 2013; pp. 1–272. [Google Scholar]
- Brecht, B.M.; Schädler, G.; Schipper, J.W. UTCI climatology and its future change in Germany—An RCM ensemble approach. Meteorol. Z. 2020, 29, 97–116. [Google Scholar] [CrossRef]
- Lünich, K.; Pluntke, T.; Prasser, M. (Eds.) Lausitzer Neiße—Charakteristik und Klima der Region (Lausitzer Neisse—Characteristics and Climate of the Region); Sachsisches Landesamt fur Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 75. [Google Scholar]
- Pluntke, T.; Schwarzak, S.; Kuhn, K.; Lünich, K.; Adynkiewicz-Piragas, M.; Otop, I.; Miszuk, B. Climate analysis as a basis for a sustainable water management at the Lusatian Neisse. Meteorol. Hydrol. Water Manag. 2014, 4, 3–11. [Google Scholar] [CrossRef]
- Mehler, S.; Völlings, A.; Flügel, I.; Szymanowski, M.; Błaś, M.; Sobik, M.; Migała, K.; Werner, M.; Kryza, M.; Miszuk, B.; et al. Zmiany Klimatu w Regionie Granicznym Polski i Saksonii (Climate Changes in the Polish-Saxon Border Region); Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 80. [Google Scholar]
- Miszuk, B.; Otop, I.; Strońska, M.; Schwarzak, S.; Surke, M. Tourism-climate conditions and their future development in the Polish-Saxon border area. Meteorol. Z. 2016, 25, 421–434. [Google Scholar] [CrossRef]
- Fiala, D.; Lomas, K.J.; Stohrer, M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int. J. Biometeorol. 2001, 45, 143–159. [Google Scholar] [CrossRef]
- Jendtritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błażejczyk, K.; Broede, P.; Fiala, D.; Havenith, G.; Holmer, I.; Jendritzky, G.; Kampmann, B. UTCI—New index for assessment of heat stress in man. Przegl. Geogr. 2010, 82, 49–71. [Google Scholar]
- Błażejczyk, K.; Błażejczyk, M. Bioklima2.6, Software Package. 2010. Available online: https://www.igipz.pan.pl/Bioklima-zgik.html (accessed on 23 November 2020).
- Ojrzyńska, H. Cyrkulacyjne Uwarunkowania Przestrzennego Rozkładu Temperatury Powietrza w Terenie Zróżnicowanym Morfologicznie na Przykładzie Sudetów (Circulation Conditionings of Air Temperature Spatial Differentiation in Morphologically Diverse area with the Use of an Example of the Western Sudeten); Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego: Wrocław, Poland, 2015; p. 228. [Google Scholar]
- Ojrzyńska, H.; Bilińska, D.; Werner, M.; Kryza, M.; Malkiewicz, M. The influence of atmospheric circulation conditions on Betula and Alnus pollen concentrations in Wrocław, Poland. Aerobiologia 2020, 36, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Ojrzyńska, H. Calendar of circulation types for 1971–2018. Obtained Directly from the Author. Unpublished work.
- Kwiatkowski, J. Zasięg fenów sudeckich i ich wpływ na mezoklimat regionów południowo-zachodniej i środkowej Polski (The range of Sudetic fohn winds and their influence on the mesoclimate of southwest and central Poland). Przegl. Geofiz. 1975, 20, 15–30. [Google Scholar]
- Koźmiński, C.; Michalska, B. Zmienność liczby dni zimnych, chłodnych, ciepłych, gorących i upalnych w Polsce w okresie kwiecień–wrzesień (Variability in the numbers of cold, cool, warm, hot, and very hot days in Poland in the April–September period). Przegl. Geogr. 2011, 83, 91–107. [Google Scholar] [CrossRef]
- Żmudzka, E. Changes of thermal conditions in the Polish Tatra Mountains. Landf. Anal. 2009, 10, 140–146. [Google Scholar]
- Kundzewicz, Z.W.; Huang, S. Seasonal temperature extremes in Potsdam. Acta Geophys. 2010, 58, 1115–1133. [Google Scholar] [CrossRef]
- Owczarek, M.; Filipiak, J. Contemporary changes of thermal conditions in Poland, 1951–2015. Bull. Geogr. Phys. Geogr. 2016, 10, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J.; Podstawczyńska, A.; Rzepa, M.; Piotrowski, P. Heat waves in Poland—frequency, trends and relationships with atmospheric circulation. Geogr. Pol. 2009, 82, 33–45. [Google Scholar] [CrossRef]
- Kažys, J.; Malūnavičiūtė, I. The evaluation of summer beaching conditions on the Baltic Sea coast using the UTCI index. Int. J. Clim. Chang. Impacts Resp. 2015, 7, 41–59. [Google Scholar] [CrossRef]
- Scott, D.; Lemieux, C. Weather and climate information for tourism. Procedia Environ. Sci. 2010, 1, 146–183. [Google Scholar] [CrossRef] [Green Version]
- Bryś, K.; Ojrzyńska, H. Stimulating qualities of biometeorological conditions in Wrocław. Acta Geogr. Lodz. Folia Geogr. Phys. 2016, 104, 193–200. [Google Scholar]
- Krzyżewska, A.; Wereski, S.; Dobek, M. Summer UTCI Variability in Poland in the Twenty-First Century. Int. J. Biometeorol., Special Issue: UTCI—10 Years of Applications. 2020. Available online: https://link.springer.com/article/10.1007/s00484-020-01965-2 (accessed on 11 December 2020).
- Milewski, P. Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka region. Geogr. Pol. 2013, 86, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Banc, S.; Croitoru, A.-E.; David, A.N.; Scripcă, A.-S. Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016. Atmosphere 2020, 11, 819. [Google Scholar] [CrossRef]
- Dobrinescu, A.; Busuioc, A.; Birsan, M.V.; Dumitrescu, A.; Orzan, A. Changes in thermal discomfort indices in Romania and their connection with large-scale mechanisms. Clim. Res. 2015, 64, 213–226. [Google Scholar] [CrossRef]
- Owczarek, M. The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theor. Appl. Climatol. 2018, 137, 855–869. [Google Scholar] [CrossRef]
- Bartoszek, K.; Wereski, S.; Krzyżewska, A.; Dobek, M. The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bull. Geogr. Phys. Geogr. Ser. 2017, 12, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K.; Idzikowska, D.; Błażejczyk, A. Forecast changes for heat and cold stress in Warsaw in the 21st century, and their possible influence on mortality risk. Pap. Glob. Chang. 2013, 20, 47–62. [Google Scholar] [CrossRef]
Station | Location | Region | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|
Cottbus | Germany | Lowlands | 51°78′ | 14°32′ | 69 |
Legnica | Poland | Lowlands | 51°11′ | 16°12′ | 122 |
Dresden | Germany | Mountain foreland | 51°13′ | 13°75′ | 227 |
Görlitz | Germany | Mountain foreland | 51°16′ | 14°95′ | 238 |
Jelenia Góra | Poland | Lower mountain zone | 50°54′ | 15°47′ | 342 |
Śnieżka Mountain | Poland | Summit zone | 50°44′ | 15°44′ | 1603 |
Stress Category | UTCI (°C) |
---|---|
Extreme heat stress | above 46 |
Very strong heat stress | 38 to 46 |
Strong heat stress | 32 to 38 |
Moderate heat stress | 26 to 32 |
No thermal stress | 9 to 26 |
Slight cold stress | 0 to 9 |
Moderate cold stress | −13 to 0 |
Strong cold stress | −27 to −13 |
Very strong cold stress | −40 to −27 |
Extreme cold stress | below −40 |
Criteria | Cottbus | Legnica | Dresden | Görlitz | Jelenia Góra |
---|---|---|---|---|---|
Mean annual number of heat days | 12.2 | 9.4 | 8.2 | 6.6 | 4.5 |
Maximum annual number of heat days (year) | 32 (2019) | 30 (2015) | 27 (2015) | 25 (2015, 2018) | 23 (2015) |
Change per decade (days) | 2.41 | 2.37 | 1.10 | 1.67 | 1.52 |
Station | Category | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cottbus | SHS | . | . | . | 0.0 | 0.5 | 2.0 | 3.7 | 3.2 | 0.4 | . | . | . |
VSHS | . | . | . | . | . | 0.2 | 0.5 | 0.4 | . | . | . | . | |
Legnica | SHS | . | . | . | . | 0.2 | 1.3 | 2.7 | 2.5 | 0.3 | . | . | . |
VSHS | . | . | . | . | . | 0.1 | 0.3 | 0.2 | . | . | . | . | |
Dresden | SHS | . | . | . | . | 0.2 | 1.5 | 3.0 | 2.4 | 0.3 | . | . | . |
VSHS | . | . | . | . | . | 0.1 | 0.3 | 0.2 | . | . | . | . | |
Görlitz | SHS | . | . | . | . | 0.1 | 1.3 | 2.4 | 1.9 | 0.1 | . | . | . |
VSHS | . | . | . | . | . | 0.0 | 0.1 | 0.1 | . | . | . | . | |
Jelenia Góra | SHS | . | . | . | . | 0.0 | 0.8 | 1.8 | 1.9 | 0.2 | . | . | . |
VSHS | . | . | . | . | . | 0.0 | 0.0 | 0.1 | . | . | . | . |
Stress Category According to the UTCI | Cottbus | Legnica | Dresden | Görlitz | Jelenia Góra | Śnieżka Mountain |
---|---|---|---|---|---|---|
Extreme cold stress | - | - | - | - | - | −4.5 |
Very strong cold stress | −0.2 | −0.4 | 0.0 | −1.6 | −0.6 | −0.9 |
Strong cold stress | −2.6 | −0.8 | 0.4 | −5.3 | −2.3 | −0.4 |
Moderate cold stress | −0.2 | −1.3 | 1.0 | 1.0 | 0.2 | 1.5 |
Slight cold stress | −1.1 | −1.6 | −2.9 | −1.3 | −1.5 | 2.1 |
No thermal stress | 2.1 | 3.0 | 1.4 | 5.8 | 2.8 | 2.2 |
Moderate heat stress | 1.2 | 0.2 | −0.2 | 0.6 | 0.5 | - |
Strong heat stress | 0.6 | 0.7 | 0.2 | 0.9 | 0.8 | - |
Very strong heat stress | 0.3 | 0.1 | 0.2 | 0.1 | 0.0 | - |
Station | UTCI Category | 1992 | 1994 | 2003 | 2006 | 2015 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|
Cottbus | Strong heat stress | 15 | 21 | 18 | 21 | 17 | 21 | 15 |
Very strong heat stress | 3 | 7 | 0 | 1 | 5 | 4 | 3 | |
Total | 18 | 28 | 18 | 22 | 22 | 25 | 18 | |
Legnica | Strong heat stress | 11 | 14 | 7 | 16 | 16 | 16 | 10 |
Very strong heat stress | 3 | 5 | 1 | 0 | 4 | 0 | 2 | |
Total | 14 | 19 | 8 | 16 | 20 | 16 | 12 | |
Dresden | Strong heat stress | 11 | 13 | 14 | 13 | 13 | 17 | 11 |
Very strong heat stress | 2 | 6 | 0 | 1 | 4 | 1 | 2 | |
Total | 13 | 19 | 14 | 14 | 17 | 18 | 13 | |
Görlitz | Strong heat stress | 9 | 13 | 12 | 11 | 12 | 14 | 16 |
Very strong heat stress | 2 | 4 | 0 | 0 | 2 | 0 | 1 | |
Total | 11 | 17 | 12 | 11 | 14 | 14 | 17 | |
Jelenia Góra | Strong heat stress | 15 | 15 | 10 | 8 | 11 | 8 | 7 |
Very strong heat stress | 0 | 2 | 0 | 0 | 2 | 0 | 1 | |
Total | 15 | 17 | 10 | 8 | 13 | 8 | 8 |
Station | Index | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C |
---|---|---|---|---|---|---|---|---|---|---|---|
Cottbus | Heat days | 0.36 | −0.01 | −0.12 | −0.27 | 0.25 | 0.16 | −0.15 | −0.35 | 0.23 | −0.20 |
UTCI > 32 | 0.46 | −0.10 | −0.03 | −0.15 | 0.19 | 0.05 | −0.24 | −0.38 | 0.25 | −0.15 | |
Legnica | Heat days | 0.15 | −0.21 | −0.01 | −0.34 | 0.21 | 0.15 | 0.07 | −0.29 | 0.12 | −0.28 |
UTCI > 32 | 0.26 | −0.13 | −0.12 | −0.26 | 0.35 | 0.22 | −0.08 | −0.35 | 0.27 | −0.14 | |
Dresden | Heat days | 0.41 | −0.18 | 0.04 | −0.21 | 0.17 | −0.05 | −0.15 | −0.41 | 0.24 | −0.22 |
UTCI > 32 | 0.49 | −0.08 | 0.06 | −0.20 | 0.17 | −0.01 | −0.27 | −0.46 | 0.31 | −0.28 | |
Görlitz | Heat days | 0.30 | −0.19 | −0.02 | −0.23 | 0.22 | 0.07 | −0.04 | −0.41 | 0.21 | −0.21 |
UTCI > 32 | 0.28 | −0.15 | 0.12 | −0.06 | 0.19 | 0.04 | −0.18 | −0.40 | 0.15 | −0.16 | |
JeleniaGóra | Heat days | 0.13 | −0.23 | 0.02 | −0.24 | 0.17 | 0.10 | 0.07 | −0.31 | 0.16 | −0.24 |
UTCI > 32 | 0.16 | −0.20 | 0.13 | −0.13 | 0.15 | 0.07 | −0.08 | −0.29 | 0.14 | −0.28 |
Station | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Cottbus | 27.5 | 3.9 | 10.1 | 0.5 | 8.8 | 8.3 | 27.7 | 6.7 | 5.3 | 1.2 | 100.0 |
Legnica | 19.4 | 1.6 | 9.8 | 0.2 | 9.3 | 5.7 | 38.5 | 11.2 | 3.2 | 1.1 | 100.0 |
Dresden | 28.2 | 2.4 | 14.2 | 0.8 | 7.7 | 4.2 | 28.8 | 6.6 | 5.5 | 1.6 | 100.0 |
Görlitz | 29.0 | 2.3 | 10.9 | 0.7 | 7.9 | 4.3 | 32.0 | 7.3 | 5.3 | 0.3 | 100.0 |
Jelenia Góra | 21.7 | 1.0 | 7.9 | 0.5 | 8.4 | 5.4 | 39.9 | 11.3 | 3.4 | 0.5 | 100.0 |
Station | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Cottbus | 33.2 | 2.5 | 12.3 | 0.8 | 8.8 | 6.1 | 22.3 | 6.3 | 5.9 | 2.0 | 100.0 |
Legnica | 24.9 | 2.8 | 9.2 | 0.0 | 9.2 | 5.6 | 33.6 | 7.8 | 5.6 | 1.1 | 100.0 |
Dresden | 31.0 | 3.0 | 13.2 | 0.0 | 9.2 | 3.5 | 27.2 | 5.7 | 5.1 | 2.2 | 100.0 |
Görlitz | 30.8 | 2.4 | 11.9 | 0.3 | 8.7 | 4.9 | 25.2 | 6.6 | 7.7 | 1.4 | 100.0 |
Jelenia Góra | 24.7 | 0.9 | 10.8 | 0.4 | 10.3 | 4.0 | 36.8 | 7.2 | 4.0 | 0.9 | 100.0 |
Station | Index | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C |
---|---|---|---|---|---|---|---|---|---|---|---|
Cottbus | Heat days | 21.5 | 8.6 | 5.5 | 2.7 | 27.1 | 18.9 | 10.1 | 7.2 | 31.0 | 15.0 |
UTCI > 32 | 23.4 | 5.6 | 5.9 | 3.5 | 25.8 | 11.7 | 7.5 | 5.6 | 28.7 | 17.5 | |
Legnica | Heat days | 11.9 | 3.0 | 4.1 | 0.9 | 23.9 | 12.8 | 11.7 | 8.9 | 14.9 | 10.0 |
UTCI > 32 | 12.2 | 4.3 | 3.2 | 0.0 | 19.4 | 8.7 | 8.1 | 5.0 | 18.4 | 10.0 | |
Dresden | Heat days | 15.4 | 3.9 | 5.1 | 2.7 | 17.4 | 7.1 | 7.4 | 4.9 | 21.8 | 12.5 |
UTCI > 32 | 16.2 | 4.3 | 4.8 | 0.0 | 20.6 | 5.6 | 6.6 | 3.7 | 17.2 | 15.0 | |
Görlitz | Heat days | 12.6 | 3.0 | 3.3 | 1.8 | 14.8 | 6.1 | 6.8 | 4.1 | 16.1 | 2.5 |
UTCI > 32 | 12.5 | 3.0 | 3.4 | 0.9 | 14.8 | 6.6 | 5.1 | 3.7 | 20.7 | 10.0 | |
Jelenia Góra | Heat days | 6.2 | 0.9 | 1.6 | 0.9 | 11.0 | 5.6 | 5.7 | 4.1 | 8.0 | 2.5 |
UTCI > 32 | 7.9 | 0.9 | 2.4 | 0.9 | 14.2 | 4.1 | 5.7 | 2.9 | 9.2 | 5.0 |
Station | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C |
---|---|---|---|---|---|---|---|---|---|---|
Cottbus | 0.11 | 0.02 | 0.34 | 0.01 | 0.06 | 0.40 | 0.71 | 0.31 | 0.11 | −0.02 |
Legnica | 0.20 | −0.03 | 0.17 | 0.01 | 0.01 | 0.21 | 1.00 | 0.47 | 0.15 | −0.01 |
Dresden | 0.00 | −0.01 | 0.22 | −0.02 | −0.07 | 0.07 | 0.34 | 0.14 | 0.12 | −0.03 |
Görlitz | 0.18 | −0.01 | 0.29 | −0.01 | −0.04 | 0.13 | 0.51 | 0.27 | 0.15 | 0.01 |
Jelenia Góra | 0.25 | −0.03 | 0.15 | 0.01 | 0.02 | 0.11 | 0.49 | 0.23 | 0.07 | 0.01 |
Station | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C |
---|---|---|---|---|---|---|---|---|---|---|
Cottbus | −0.02 | −0.01 | 0.21 | 0.01 | −0.06 | 0.17 | 0.25 | 0.27 | 0.05 | −0.06 |
Legnica | 0.04 | −0.04 | 0.12 | 0.00 | −0.01 | 0.04 | 0.35 | 0.20 | 0.11 | −0.01 |
Dresden | −0.22 | −0.01 | 0.15 | 0.00 | −0.07 | 0.03 | 0.21 | 0.15 | 0.05 | −0.08 |
Görlitz | 0.02 | 0.00 | 0.20 | −0.02 | −0.05 | 0.05 | 0.23 | 0.18 | 0.13 | 0.01 |
Jelenia Góra | 0.23 | −0.01 | 0.12 | 0.01 | 0.06 | −0.03 | 0.22 | 0.14 | 0.02 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miszuk, B. Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere 2021, 12, 163. https://doi.org/10.3390/atmos12020163
Miszuk B. Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere. 2021; 12(2):163. https://doi.org/10.3390/atmos12020163
Chicago/Turabian StyleMiszuk, Bartłomiej. 2021. "Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region" Atmosphere 12, no. 2: 163. https://doi.org/10.3390/atmos12020163
APA StyleMiszuk, B. (2021). Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere, 12(2), 163. https://doi.org/10.3390/atmos12020163