Particulate Matter Profiles along the Rack Railway Route Using Low-Cost Sensor
Abstract
:1. Introduction
2. Measurement Technique and Methodology
2.1. Measurement Location and Duration
2.2. Measurement Setup
2.3. Data Analysis and Processing
3. Results and Discussion
3.1. PM Profiles along the Rack Railway Route
3.2. PM Concentration Comparison between Sensor-Monitoring Box and Professional Aerosol Spectrometer
3.3. PM Concentration Comparison between Sensor-Monitoring Box and Mobile Aerosol Spectrometer
4. Quality Assurance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guerreiro, C.B.; Foltescu, V.; De Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; He, K.; Cheng, Y.; Duan, F.; Ma, Y.; Liu, J.; Zhang, X.; Zheng, M.; Weber, R. A yearlong study of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature. Atmos. Environ. 2014, 92, 514–521. [Google Scholar] [CrossRef]
- Cheng, H.; Gong, W.; Wang, Z.; Zhang, F.; Wang, X.; Lv, X.; Liu, J.; Fu, X.; Zhang, G. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. J. Environ. Sci. 2014, 26, 810–817. [Google Scholar] [CrossRef]
- Rajper, S.A.; Ullah, S.; Li, Z. Exposure to air pollution and self-reported effects on Chinese students: A case study of 13 megacities. PLoS ONE 2018, 13, e0194364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organisation (WHO): Geneva, Switzerland, 2016; ISBN 9789241511353. [Google Scholar]
- World Health Organisation. Air Pollution Infographics. Available online: https://www.who.int/airpollution/infographics/en/ (accessed on 31 March 2019).
- Ayres, J.G.; Borm, P.; Cassee, F.R.; Castranova, V.; Donaldson, K.; Ghio, A.; Harrison, R.M.; Hider, R.; Kelly, F.; Kooter, I.M.; et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—A workshop report and consensus statement. Inhal. Toxicol. 2008, 20, 75–99. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Moore, M.R.; Ristovski, Z.D. Health Impacts of Ultrafine Particles—Desktop Literature Review and Analysis; Department of the Environment and Heritage: Canberra, Australia, 2004. [Google Scholar]
- Health Effects Institute. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; A Special Report of the HEI Panel on the Health Effects of Traffic-Related Air Pollution; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- Hagemann, R.; Corsmeier, U.; Kottmeier, C.; Rinke, R.; Wieser, A.; Vogel, B. Spatial variability of particle number concentrations and NOx in the Karlsruhe (Germany) area obtained with the mobile laboratory ‘AERO-TRAM’. Atmos. Environ. 2004, 94, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Tessum, M.W.; Larson, T.; Gould, T.R.; Simpson, C.D.; Yost, M.G.; Vedal, S. Mobile and Fixed-Site Measurements to Identify Spatial Distributions of Traffic-Related Pollution Sources in Los Angeles. Environ. Sci. Technol. 2018, 52, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Samad, A.; Vogt, U. Investigation of urban air quality by performing mobile measurements using a bicycle (MOBAIR). Urban Clim. 2020, 33, 100650. [Google Scholar] [CrossRef]
- Birmili, W.; Rehn, J.; Vogel, A.; Boehlke, C.; Weber, K.; Rasch, F. Micro-scale variability of urban particle number and mass concentrations in Leipzig, Germany. Meteorol. Z. 2013, 22, 155–165. [Google Scholar] [CrossRef]
- Li, J. Recent Advances in Low-Cost Particulate Matter Sensor: Calibration and Application. Engineering and Applied Science Theses & Dissertations. 2019. 450. Available online: https://openscholarship.wustl.edu/eng_etds/450 (accessed on 16 September 2020).
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef] [Green Version]
- Tagle, M.; Rojas, F.; Reyes, F.; Vásquez, Y.; Hallgren, F.; Lindén, J.; Kolev, D.; Watne, Å.K.; Oyola, P. Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environ. Monit. Assess. 2020, 192, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM 2.5 Monitoring. J. Sens. 2018, 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Stuttgarter Straßenbahnen AG: Stuttgarts Zahnradbahn. Zwischen Marienplatz und Degerloch seit 1884. Stuttgarter Straßenbahnen AG (SSB). Available online: https://www.ssb-ag.de/unternehmen/informationen-fakten/fahrzeuge/zahnradbahn/ (accessed on 1 September 2020).
- United Nations. World Urbanization Prospects 2018; United Nations (UN): New York, NY, USA, 2018. [Google Scholar]
- Regierungspräsidium Stuttgart. Luftreinhalteplan für den Regierungsbezirk Stuttgart—Teilplan Landeshauptstadt Stuttgart der PM10- und NO2-Belastungen. 3. Fortschreibung des Luftreinhalteplanes zur Minderung der PM10- und NO2-Belastungen. Stuttgart, 2018. Available online: https://rp.baden-wuerttemberg.de/rps/Abt5/Ref541/Luftreinhalteplan/541_s_luft_stutt_LRP_3_FS_2018.pdf (accessed on 1 September 2020).
- Baumüller, J.; Hoffmann, U.; Reuter, U. Stadtklima 21—Grundlagen zum Stadtklima und zur Planung "Stuttgart 21"; Amt für Umweltschutz, Abteilung Stadtklimatologie: Stuttgart, Germany, 1998. [Google Scholar]
- Landesanstalt für Umwelt Baden-Württemberg. Luftreinhaltepläne für Baden-Württbemberg—Grundlagenband 2016; Landesanstalt für Umwelt Baden-Württemberg: Karlsruhe, Germany, 2016. [Google Scholar]
- Landesanstalt für Umwelt Baden-Württemberg. Verkehrsstärken an ausgewählten Verkehrs- und Spotmessstellen—Auswertungen 2016; Landesanstalt für Umwelt Baden-Württemberg: Karlsruhe, Germany, 2018. [Google Scholar]
- Baumbach, G. Air Quality Control. In Formation and Sources, Dispersion, Characteristics and Impact of Air Pollutants—Measuring Methods, Techniques for Reduction of Emissions and Regulations for Air Quality Control; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Alphasense Ltd. Alphasense User Manual OPC-N2 Optical Particle Counter. 2015. Available online: https://www.manualslib.com/manual/1540841/Alphasense-Opc-N2.html (accessed on 1 September 2020).
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm Aerosol Technik GmbH & Co. KG. Portable Laser Aerosolspectrometer and Dust Monitor Model 1.108/1.109. 2010. Available online: https://www.wmo-gaw-wcc-aerosol-physics.org/files/opc-grimm-model--1.108-and-1.109.pdf (accessed on 1 September 2020).
- Grimm Aerosol Technik GmbH & Co. KG. EDM 180 EDM 180 Environmental Dust Monitor for Approved PM Measurements. 2020. Available online: https://www.grimm-aerosol.com/fileadmin/files/grimm-aerosol/3%20Products/Environmental%20Dust%20Monitoring/Approved%20PM%20Monitor/EDM180_The_Proven/Product%20PDFs/Datasheet_EDM180_ENG_2020.pdf (accessed on 1 September 2020).
- G. Lufft Mess- und Regeltechnik GmbH. Technical data WS301-UMB Smart Weather Sensor. 2020. Available online: https://www.lufft.com/products/compact-weather-sensors-293/ws301-umb-smart-weather-sensor-1849/productAction/outputAsPdf/ (accessed on 1 September 2020).
- Onset Computer Corporation. HOBO MX2300 Series Data Logger Manual. 2016. Available online: https://www.onsetcomp.com/files/manual_pdfs/20923-L%20MX2300%20Manual.pdf (accessed on 1 September 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samad, A.; Maali, A.; Laquai, B.; Vogt, U. Particulate Matter Profiles along the Rack Railway Route Using Low-Cost Sensor. Atmosphere 2021, 12, 126. https://doi.org/10.3390/atmos12020126
Samad A, Maali A, Laquai B, Vogt U. Particulate Matter Profiles along the Rack Railway Route Using Low-Cost Sensor. Atmosphere. 2021; 12(2):126. https://doi.org/10.3390/atmos12020126
Chicago/Turabian StyleSamad, Abdul, Anas Maali, Bernd Laquai, and Ulrich Vogt. 2021. "Particulate Matter Profiles along the Rack Railway Route Using Low-Cost Sensor" Atmosphere 12, no. 2: 126. https://doi.org/10.3390/atmos12020126
APA StyleSamad, A., Maali, A., Laquai, B., & Vogt, U. (2021). Particulate Matter Profiles along the Rack Railway Route Using Low-Cost Sensor. Atmosphere, 12(2), 126. https://doi.org/10.3390/atmos12020126