Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data, Sampling, Tree Rings Measuring
2.3. Chronology Building and Climatic Calibrations
2.4. Extremely Narrow and Wide Tree Rings
3. Results
3.1. Daily and Monthly Data Comparison: Correlation of Tree Ring width Index to Climate Data
3.2. Monthly Climate Data
3.3. Daily Climate Data
3.4. Daily Climate Data vs. Monthly Climate Data
3.5. Extremely Narrow and Wide Tree Rings
4. Discussion
Extreme Years
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gričar, J. Biomass allocation shifts of Fagus sylvatica L. and Pinus sylvestris L. seedlings in response to temperature / Prerazporeditev biomase pri sadikah Fagus sylvatica L. in Pinus sylvestris L. kot odziv na temperaturo. Folia Biol. Geol. 2019, 59, 45. [Google Scholar] [CrossRef]
- Opała, M. The 443-Year Tree-Ring Chronology for the Scots Pine from Upper Silesia (Poland) as A Dating Tool and Climate Proxy. Geochronometria 2015, 42, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Bouriaud, O.; Popa, I. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees—Struct. Funct. 2009, 23, 95–106. [Google Scholar] [CrossRef]
- Harvey, J.E.; Smiljanić, M.; Scharnweber, T.; Buras, A.; Cedro, A.; Cruz-García, R.; Drobyshev, I.; Janecka, K.; Jansons, Ā.; Kaczka, R.; et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Chang. Biol. 2020, 26, 2505–2518. [Google Scholar] [CrossRef] [PubMed]
- Matyas, C.; Ackzell, L.; Samuel, C.J.A. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Scots Pine (Pinus sylvestris); Biodiversity International: Rome, Italy, 2004; Volume 6. [Google Scholar]
- Helama, S.; Holopainen, J.; Timonen, M.; Mielikainen, K. An 854-year tree-ring chronology of scots pine for South-West Finland. Stud. Quat. 2014, 31, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Hökkä, H.; Salminen, H.; Ahti, E. Effect of temperature and precipitation on the annual diameter growth of Scots pine on drained peatlands and adjacent mineral soil sites in Finland. Dendrochronologia 2012, 30, 157–165. [Google Scholar] [CrossRef]
- Helama, S.; Lindholm, M. Droughts and rainfall in south-eastern Finland since AD 874, inferred from Scots pine ring-widths. Boreal Environ. Res. 2003, 8, 171–183. [Google Scholar]
- Shestakova, T.A.; Voltas, J.; Saurer, M.; Siegwolf, R.T.W.; Kirdyanov, A.V. Warming effects on Pinus sylvestris in the cold-dry Siberian forest-steppe: Positive or negative balance of trade? Forests 2017, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Zielski, A. Uwarunkowania środowiskowe przyrostów radialnych sosny zwyczajnej (Pinus sylvestris L.) w Polsce północnej na podstawie wielowiekowej chronologii. Wydaw. UMK Toruń. 1997, 15, 44. [Google Scholar]
- Zielski, A.; Sygit, W. Wpływ klimatu na przyrost radialny sosny w borach i borach mieszanych na transektach badawczych: Klimatycznym (wzdłuż 52°n, od 12°–32°e) i śląskim’. In Dokumentacja Geograficzna 13—Bory Sosnowe w Gradiencie Kontynentalizmu i Zanieczyszczeń Europie Środkowej—Badania Geoekologiczne; Breymeyr, A., Roo-Zielińska, E., Eds.; Dokumentacja Geograficzna: Wrocław, Poland, 1998. [Google Scholar]
- Zielski, A.; Krąpiec, M.; Koprowski, M. Dendrochronological data. In The Polish Climate in the European Context: An Historical Overview; Przybylak, R., Majorowicz, J., Brázdil, R.K.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 191–217. ISBN 978-90-481-3167-9. [Google Scholar]
- Opała, M.; Mendecki, M.J. An attempt to dendroclimatic reconstruction of winter temperature based on multispecies tree-ring widths and extreme years chronologies (example of Upper Silesia, Southern Poland). Theor. Appl. Climatol. 2014, 115, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Przybylak, R.; Majorowicz, J.; Wójcik, G.; Zielski, A.; Chorązyczewski, W.; Marciniak, K.; Nowosad, W.; Oliński, P.; Syta, K. Temperature changes in Poland from the 16th to the 20th centuries. Int. J. Climatol. 2005, 25, 773–791. [Google Scholar] [CrossRef]
- Koprowski, M.; Przybylak, R.; Zielski, A.; Pospieszyńska, A. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland. Int. J. Biometeorol. 2012, 56, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielski, A.; Krąpiec, M. Dendrochronologia; PWN: Warszawa, Poland, 2004. [Google Scholar]
- Szychowska-Krąpiec, E. Long-term chronologies of pine (Pinus sylvestris L.) and fir (Abies alba Mill.) from the Małopolska Region and their paleoclimatic interpretation. Folia Quat. 2010, 79, 915. [Google Scholar]
- Zielski, A. Long term chronology of Scots Pine (Pinus sylvestris L.) in the Northern part of Poland. Dendrochronologia 1992, 10, 77–90. [Google Scholar]
- Szychowska-Krapiec, E. Dendrochronological pine scale (1622–1966 AD) for the Malopolska area (south Poland). Bull.—Pol. Acad. Sci. Earth Sci. 1997, 45, 1–13. [Google Scholar]
- Szychowska-Krąpiec, E.; Krąpiec, M. Dendrochronological studies on construction of pine (Pinus sylvestris L.) standard for SW Poland. Geochronometria 2001, 20, 51–56. [Google Scholar]
- Zielski, A.; Krąpiec, M.; Wilczyński, S.; Szychowska-Krąpiec, E. Chronologie przyrostów radialnych sosny zwyczajnej w Polsce [Chronologies of radial growth of Scots pine in Poland]. Sylwan 2001, 5, 105–120. [Google Scholar]
- Szychowska-Krąpiec, E.; Krąpiec, M. The Scots Pine Chronology (1582–2004 AD) for the Suwałki Region, NE Poland. Geochronometria 2005, 24, 41–51. [Google Scholar]
- Heußner, K. Zum Stand der Dendrochronologie im unteren Odergebiet (The state of dendrochronology in the lower Oder region). In Człowiek a Środowisko w Środkowym i Dolnym Nadodrzu. Spotkania Bytomskie 2; Instytut Archeologii i Etnologii PAN: Wrocław, Poland, 1996; pp. 207–211. [Google Scholar]
- Läänelaid, A.; Eckstein, D. Development of a tree-ring chronology of Scots pine (Pinus sylvestris L.) for Estonia as a dating tool and climatic proxy. Balt. For. 2003, 9, 76–82. [Google Scholar]
- Vitas, A. Tree-ring chronology of Scots pine (Pinus sylvestris L.) for Lithuania. Balt. For. 2008, 14, 110–115. [Google Scholar]
- Büntgen, U.; Frank, D.C.; Kaczka, R.J.; Verstege, A.; Zwijacz-Kozica, T.; Esper, J. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol. 2007, 27, 689–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büntgen, U.; Brázdil, R.; Heussner, K.U.; Hofmann, J.; Kontic, R.; Kyncl, T.; Pfister, C.; Chromá, K.; Tegel, W. Combined dendro-documentary evidence of Central European hydroclimatic springtime extremes over the last millennium. Quat. Sci. Rev. 2011, 30, 3947–3959. [Google Scholar] [CrossRef]
- Pritzkow, C.; Wazny, T.; Heußner, K.; Słowiński, M.; Bieber, A.; Liñán, I.; Helle, G.; Heinrich, I. Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography 2016, 449, 520–530. [Google Scholar] [CrossRef]
- Balanzategui, D.; Knorr, A.; Heussner, K.-U.; Wazny, T.; Beck, W.; Słowinski, M.; Helle, G.; Buras, A.; Wilmking, M.; Van Der Maaten, E.; et al. An 810-year history of cold season temperature variability for northern Poland. Boreas 2017, 47, 443–453. [Google Scholar] [CrossRef]
- Przybylak, R.; Oliński, P.; Koprowski, M.; Filipiak, J.; Pospieszyńska, A.; Chora, C.; Zyczewski, W.; Puchalka, R.; Dabrowski, H.P. Droughts in the area of Poland in recent centuries in the light of multi-proxy data. Clim. Past 2020, 16, 627–661. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- Vitas, A. Drought of 1992 in Lithuania and consequences to Norway Spruce. Balt. For. 2001, 7, 25–30. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Sohar, K.; Helama, S.; Läänelaid, A.; Raisio, J.; Tuomenvirta, H. Oak decline in a Southern finnish forest as affected by a drought sequence. Geochronometria 2014, 41, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, P.R. Dendroclimatology: Extracting climate from trees. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 343–352. [Google Scholar] [CrossRef]
- Arzac, A.; Babushkina, E.A.; Fonti, P.; Slobodchikova, V.; Sviderskaya, I.V.; Vaganov, E.A. Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. Dendrochronologia 2018, 49, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Martinez del Castillo, E.; Prislan, P.; Gričar, J.; Gryc, V.; Merela, M.; Giagli, K.; de Luis, M.; Vavrčík, H.; Čufar, K. Challenges for growth of beech and co-occurring conifers in a changing climate context. Dendrochronologia 2018, 52, 1–10. [Google Scholar] [CrossRef]
- Matisons, R.; Jansone, D.; Elferts, D.; Adamovičs, A.; Schneck, V.; Jansons, Ā. Plasticity of response of tree-ring width of Scots pine provenances to weather extremes in Latvia. Dendrochronologia 2019, 54, 1–10. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Stott, P.A.; AchutaRao, K.M.; Allen, M.R.; Gillett, N.; Gutzler, D.; Hansingo, K.; Hegerl, G.; Hu, Y.; Jain, S.; et al. Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 867–952. [Google Scholar]
- Sullivan, P.F.; Pattison, R.R.; Brownlee, A.H.; Cahoon, S.M.P.; Hollingsworth, T.N. Effect of tree-ring detrending method on apparent growth trends of black and white spruce in interior Alaska. Environ. Res. Lett. 2016, 11, 7. [Google Scholar] [CrossRef]
- Aykroyd, R.G.; Lucy, D.; Pollard, A.M.; Carter, A.H.C.; Robertson, I. Temporal variability in the strength of proxy-climate correlations. Geophys. Res. Lett. 2001, 28, 1559–1562. [Google Scholar] [CrossRef]
- Robertson, I.; Loader, N.J.; Mccarroll, D.; Carter, A.H.C.; Cheng, L.; Leavitt, S.W. δ13C of tree-ring lignin as an indirect measure of climate change. Water. Air Soil Pollut. 2004, 4, 531–544. [Google Scholar] [CrossRef]
- Land, A.; Remmele, S.; Schönbein, J.; Küppers, M.; Zimmermann, R. Climate-growth analysis using long-term daily-resolved station records with focus on the effect of heavy precipitation events. Dendrochronologia 2017, 45, 156–164. [Google Scholar] [CrossRef]
- Kaczka, R.; Janecka, K.; Hulist, A.; Czajka, B. Linking the growth/climate response of daily resolution with annual ring formation of Norway spruce in the Tatra Mountains. Trace 2017, 15, 13–22. [Google Scholar]
- Drew, D.M.; Downes, G.M. The use of precision dendrometers in research on daily stem size and wood property variation: A review. Dendrochronologia 2009, 27, 159–172. [Google Scholar] [CrossRef]
- Chojnacka, L.; Wojciech, O.; Bolibok, L. Ocena przydatności danych gridowych w badaniach dendroklimatologicznych. Stud. Mater. CEPL Rogowie 2016, 18, 71–79. [Google Scholar]
- Hofstra, N.; Haylock, M.; New, M.; Jones, P.D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. Atmos. 2009, 114, 1799. [Google Scholar] [CrossRef]
- Yin, H.; Donat, M.G.; Alexander, L.V.; Sun, Y. Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol. 2015, 35, 2809–2827. [Google Scholar] [CrossRef]
- Kondracki, J. Geografia Regionalna Polski; PWN: Warszawa, Poland, 2002; ISBN 83-01-13897-1. [Google Scholar]
- Pospieszyńska, A.; Przybylak, R. Air temperature changes in Toruń (central Poland) from 1871 to 2010. Theor. Appl. Climatol. 2019, 135, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Grissino-Mayer, H. Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Jevšenak, J.; Levanič, T. dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia 2018, 48, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Jevšenak, J. New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia 2020, 63, 125753. [Google Scholar] [CrossRef]
- Briffa, K.; Jones, P.B. Basic chronology statistics and assessmentle. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 137–152. [Google Scholar]
- Lindholm, M.; Eggertsson, Ó.; Lovelius, N.; Raspopov, O.; Shumilov, O.; Läänelaid, A. Growth indices of North European Scots pine record the seasonal North Atlantic Oscillation. Boreal Environ. Res. 2001, 6, 275–284. [Google Scholar]
- Briffa, K.R.; Jones, P.D.; Pilcher, J.R.; Hughes, M.K. Reconstructing summer temperatures in northern Fennoscandinavia back to AD 1700 using tree-ring data from Scots pine. Arct. Alp. Res. 1988, 20, 385–394. [Google Scholar] [CrossRef]
- Fritts, H.C.; Guiot, J.; Gordon, G.A.; Schweingruber, F. Methods of Calibration, Verification, and Reconstruction. In Methods of Dendrochronology; Springer: Dordrecht, The Netherlands, 1990; pp. 163–217. [Google Scholar]
- National Research Council. Surface Temperature Reconstructions For the Last 2000 Years; The National Academies Press: Washington, DC, USA, 2006; ISBN 9780309102254.
- Meyer, F. Pointer year analysis in dendroecology: A comparison of methods. Dendrochronologia 1998, 16–17, 193–204. [Google Scholar]
- McCarroll, D. Simple Statistical Tests for Geography; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; ISBN 9781498758819. [Google Scholar]
- Feliksik, E. Badania wpływu klimatu na szerokość przyrostów rocznych drewna sosny pospolitej. AT-R Im. J. J.Śniadeckich Bydgoszczy Zesz. Nauk. Rol. 1988, 27, 11–17. [Google Scholar]
- Feliksik, E.; Wilczyński, S.; Podlaski, R. Wpływ warunków termiczno-pluwialnych na wielkość przyrostów radialnych sosny (Pinus sylvestris L.), jodły (Abies alba Mill.) i buka (Fagus sylvatica L.) ze Świętokrzyskiego Parku Narodowego. Sylwan 2000, 9, 53–59. [Google Scholar]
- Feliksik, E.; Wilczyński, S. The influence of thermal and pluvial conditions on the radial increment of the Scots pine (Pinus sylvestris L.) from the area of Dolny Śląsk. Folia For. Pol. Ser. A For. 2000, 42, 55–66. [Google Scholar]
- Wilczyński, S.; Skrzyszewski, J. Dependence of Scots pine tree-rings on climatic conditions in southern Poland (Carpathian Mts). EJPAU Ser. For. 2002, 5, 2. [Google Scholar]
- Wilczyński, S. The pointer and exceptional years in assessment of relationships “radial growth-climate”. Sylwan 2004, 5, 30–40. [Google Scholar]
- Cedro, A. Comparative Dendroclimatological Studies of the Impact of Temperature and Rainfall on Pinus nigra Arnold and Pinus sylvestris in Northwestern Poland. Balt. For. 2006, 12, 110–116. [Google Scholar]
- Koprowski, M. Reaction of silver fir (Abies alba) growing outside its natural range to extreme weather events and a long-term increase in march temperature. Tree-Ring Res. 2013, 69, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Cedro, A.; Lamentowicz, M. Contrasting responses to environmental changes by pine (Pinus sylvestris L.) growing on peat and mineral soil: An example from a Polish Baltic bog. Dendrochronologia 2011, 29, 211–217. [Google Scholar] [CrossRef]
- Kopeć, D.; Ratajczyk, N.; Wolańska-Kamińska, A.; Walisch, M.; Kruk, A. Floodplain forest vegetation response to hydroengineering and climatic pressure—A five decade comparative analysis in the bzura river valley (central poland). For. Ecol. Manag. 2014, 314, 120–130. [Google Scholar] [CrossRef]
- Lindner, M.; Garcia-Gonzalo, J.; Kolström, M.; Green, T.; Reguera, R.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Schopf, A.; et al. Impacts of Climate Change on European Forests and Options for Adaptation. AGRI-2007-G4-06, Report to the European Commission Directorate-General for Agriculture and Rural Development; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kellomäki, S.; Leinonen, S. Management of European Forests under Changing Climatic Conditions; University of Joensuu: Joensuu, Finland, 2005. [Google Scholar]
- Liang, W.; Heinrich, I.; Simard, S.; Helle, G.; Liñán, I.D.; Heinken, T. Climate signals derived from cell anatomy of scots pine in NE Germany. Tree Physiol. 2013, 33, 833–844. [Google Scholar] [CrossRef]
- Pritzkow, C.; Heinrich, I.; Grudd, H.; Helle, G. Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia 2014, 32, 295–302. [Google Scholar] [CrossRef]
- Seo, J.W.; Eckstein, D.; Jalkanen, R.; Rickebusch, S.; Schmitt, U. Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol. 2008, 28, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagavciuc, V.; Roibu, C.C.; Ionita, M.; Mursa, A.; Cotos, M.G.; Popa, I. Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia 2019, 54, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.D. Using dimension-reduction subspaces to identify important inputs in models of physical systems. Proc. Sect. Phys. Eng. Sci. 1994, 9, 18–25. [Google Scholar]
- Wilson, R.; Tudhope, A.; Brohan, P.; Briffa, K.; Osborn, T.; Tett, S. Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J. Geophys. Res. Oceans 2006, 111, 1–13. [Google Scholar] [CrossRef] [Green Version]
- D’Arrigo, R.; Wilson, R.; Liepert, B.; Cherubini, P. On the “Divergence Problem” in Northern Forests: A review of the tree-ring evidence and possible causes. Glob. Planet. Chang. 2008, 60, 289–305. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.; Andreu-Hayles, L.; Cook, E.; D’Arrigo, R.; Davi, N.; Haberbauer, L.; Krusic, P.; Luckman, B.; Morimoto, D.; et al. Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene 2019, 29, 1817–1830. [Google Scholar] [CrossRef] [Green Version]
- Savard, M.M.; Daux, V. An overview on isotopic divergences—Causes for instability of tree-ring isotopes and climate correlations. Clim. Past 2020, 16, 1223–1243. [Google Scholar] [CrossRef]
- Elling, W.; Dittmar, C.; Pfaffelmoser, K.; Rötzer, T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For. Ecol. Manag. 2009, 257, 1175–1187. [Google Scholar] [CrossRef]
- Neuwirth, B.; Schweingruber, F.H.; Winiger, M. Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 2007, 24, 79–89. [Google Scholar] [CrossRef]
- Pospieszyńska, A.; Przybylak, R. Tytuł oryginału: Ekstremalne warunki klimatyczne w Toruniu w okresie pomiarów instrumentalnych 1871-2010. In Od powietrza, Głodu, Ognia i Wojny…, Klęski Elementarne na Przestrzeni Wieków; Tomasza, G., Elżbiety, K., Eds.; Wydawnictwo GAJT: Wrocław, Poland, 2013; pp. 187–196. [Google Scholar]
Precipitation | Temperature | ||
---|---|---|---|
Time Interval | Period | Time Interval | Period |
60 days | 22 May–20 July | 30 days | 21 February–22 March |
180 days | 7 February–5 August | 60 days | 21 January–21 March |
Calibration Period A | Verification Period | ||||
---|---|---|---|---|---|
1921–1970 | 1971–2019 | ||||
r | RE | CE | RMSE | ||
precipitation | |||||
daily | 60 days | 0.54 ** | 0.07 | 0.01 | 1.24 |
monthly | 0.52 ** | −0.04 | −0.04 | 8.49 | |
daily | 180 days | 0.47 ** | 0.07 | 0.05 | 0.44 |
monthly | 0.50 ** | −0.04 | −0.04 | 5.19 | |
temperature | |||||
daily | 30 days | 0.52 ** | 0.04 | −0.39 | 3.14 |
monthly | 0.54 * | 0.17 | −0.01 | 0.81 | |
daily | 60 days | 0.42 ** | 0.17 | −0.23 | 1.11 |
monthly | 0.44 * | 0.15 | 0 | 0.75 |
Calibration Period B | Verification Period | ||||
---|---|---|---|---|---|
1971–2019 | 1921–1970 | ||||
r | RE | CE | RMSE | ||
precipitation | |||||
daily | 60 days | 0.25 | 0.27 | 0.08 | 0.58 |
monthly | 0.20 | 0.10 | 0 | 17.38 | |
daily | 180 days | 0.33 * | 0.20 | 0.17 | 0.35 |
monthly | 0.22 | 0.10 | 0.07 | 10.97 | |
temperature | |||||
daily | 30 days | 0.33 * | 0.17 | −0.16 | 3.05 |
monthly | 0.38 ** | 0.21 | −0.06 | 1.28 | |
daily | 60 days | 0.42 ** | 0.16 | −0.16 | 1.08 |
monthly | 0.30 ** | 0.16 | −0.15 | 1.28 |
Extreme Year | Mean Temperature (°C) | Precipitation Total (mm) | ||||||
---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 60 Days | 180 Days | |||||
1871 | 2.8 (March) | −2.3 (February–March, extreme February = −7.4) | 230.8 (June–July) | 292.2 (February–July) | ||||
1901 | 1.0 (March) | −2.7 (February–March) | 22 May–20 July | 55.1 | 186.9 (February–July) | |||
May–July | 60.7 | |||||||
1940 | 21 February–22 March | −2.4 | −6.0 (February–March) | 22 May–20 July | 69.8 | 7 February–5 August | 183.7 | |
February–March | −6.0 | May–July | 105.9 | February–August | 225.3 | |||
1956 | 21 February–22 March | −3.2 | 21 January–21 March | −6.6 | 22 May–20 July | 102.3 | 7 February–5 August | 201.4 |
February–March | −5.6 | January–March | −4.0 | May–July | 282.9 | February–August | 306.3 | |
1964 | 21 February–22 March | −4.7 | 21 January–21 March | −3.7 | 22 May–20 July | 79.2 | 7 February–5 August | 160.3 |
February–March | −3.3 | January–March | −3.3 | May–July | 111.8 | February–August | 251.1 | |
2006 | 21 February–22 March | −3.4 | 21 January–21 March | −4.3 | 22 May–20 July | 56.5 | 7 February–5 August | 198.3 |
February–March | −1.4 | January–March | −3.6 | May–July | 95.4 | February–August | 335.9 | |
1871–2019 | 0.3 (February–March) | −0.6 (January–March) | 190.1 (May–July) | 275.2 (February–July) |
Pointer Years | Zielski et al., 1997 [10] | Pospieszyńska and Przybylak, 2013 [86] | Przybylak et al., 2020 [30] |
---|---|---|---|
1871 | very cold year | ||
1901 | very dry year | ||
1940 | very cold winter | very cold year | |
1956 | harsh winter, very dry year | very cold year | low precipitation |
1964 | harsh winter, very dry year | very dry year | low precipitation |
2006 | very warm summer and autumn | low precipitation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waszak, N.; Robertson, I.; Puchałka, R.; Przybylak, R.; Pospieszyńska, A.; Koprowski, M. Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland. Atmosphere 2021, 12, 1690. https://doi.org/10.3390/atmos12121690
Waszak N, Robertson I, Puchałka R, Przybylak R, Pospieszyńska A, Koprowski M. Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland. Atmosphere. 2021; 12(12):1690. https://doi.org/10.3390/atmos12121690
Chicago/Turabian StyleWaszak, Nella, Iain Robertson, Radosław Puchałka, Rajmund Przybylak, Aleksandra Pospieszyńska, and Marcin Koprowski. 2021. "Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland" Atmosphere 12, no. 12: 1690. https://doi.org/10.3390/atmos12121690