Compositional Spatio-Temporal PM2.5 Modelling in Wildfires
Abstract
:1. Introduction
2. Data and Methodology
2.1. Wildfire Description
2.2. Data
2.2.1. PM2.5 Data
2.2.2. Meteorological Data
2.3. Statistical Modelling
2.3.1. Dynamic Linear Models (DLM)
2.3.2. Compositional Data (CoDa) Approach
2.4. Methodology: Proposed Approach Application in Steps
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fillippi, J.-B.; Bosseur, F.; MAri, C.; Lac, C. Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model. Atmosphere 2018, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Navarro, K.; Schweizer, D.; Balmes, J.; Cisneros, R. A Review of Community Smoke Exposure from Wildfire Compared to Prescribed Fire in the United States. Atmosphere 2018, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Castagna, J.; Senatore, A.; Bencardino, M. Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season. Atmosphere 2021, 12, 144. [Google Scholar] [CrossRef]
- Jiménez, P.; Muñoz-Esparza, D.; Kosović, B. Minimize the Impacts of Wildland Fires: Applications to the Chimney Tops II Wildland Event. Atmosphere 2018, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles form other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef] [PubMed]
- Franzi, L.; Bratt, J.; Williams, K.; Last, J. Why is particulate matter produced by wildfires toxic to lung macrophages? Toxicol. Appl. Pharmacol. 2011, 257, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, R.; Beres, N.; Moosmüller, H.; China, S.; Mazzoleni, C.; Dubey, M.; Liu, L.; Mishchenko, M. Soot superaggregates from flaming wildfires and their direct radiative forcing. Sci. Rep. 2014, 4, 5508. [Google Scholar] [CrossRef] [Green Version]
- Mallia, D.; Kochanski, A.; Urbanski, S.; Lin, J. Optimizing Smoke and Plume Rise Modeling Approaches at Local Scales. Atmosphere 2018, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Rajam, M.; Puppala, N.; Koouri, P.; Kumar, V.; Liu, Q.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef]
- Nunes, A.; Lourenç, L.; Castro-Meira, A. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total. Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef]
- Hodzic, A.; Madronich, S.; Bohn, B.; Massie, S.; Menut, L.; Wiedinmyer, C. Wildfire particulate matter in Europe during summer 2003: Meso-scale modeling of smoke emissions, transport and radiative effects. Atmos. Chem. Phys. 2007, 7, 4043–4064. [Google Scholar] [CrossRef] [Green Version]
- Koplitz, S.; Nolte, C.; Pouliot, G.; Vukovich, J.; Beidlerc, J. Influence of uncertainties in burned area estimates on modeled wildland fire PM2.5 and ozone pollution in the contiguous U.S. Atmos. Environ. 2018, 191, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Miranda, A.; Carvalho, A.; Schaap, M.; Borrego, C.; Saá, E. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal. Sci. Total. Environ. 2012, 414, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Baek, B.H.; Seppanen, C. CEMPD/SMOKE: SMOKE v4.8.1 Public Release. Zenodo. 2021. Available online: https://zenodo.org/record/4480334#.YVhEhC1t-9Y (accessed on 15 September 2021). [CrossRef]
- Lee, S.; Kim, H.; Yan, B.; Cobb, C.; Hennigan, C.; Nichols, S.; Russell, A. Diagnosis of Aged Prescribed Burning Plumes Impacting an Urban Area. Environ. Sci. Technol. 2008, 42, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Majdi, M.; Turquety, S.; Sartelet, K.; Legorgeu, C.; Menut, L.; Kim, Y. Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: Sensitivity to some parameterizations of emissions in air quality models. Atmos. Chem. Phys. 2019, 19, 785–812. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.; Rutherford, S.; Agranovski, I. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates. J. Air Waste Manag. Assoc. 2018, 68, 598–607. [Google Scholar] [CrossRef]
- Wang, X.; Watson, J.; Chow, J.; Gronstal, S.; Kohl, S. An Efficient Multipollutant System for Measuring Real-World Emissions from Stationary and Mobile Sources. Aerosol Air Qual. Res. 2012, 12, 145–160. [Google Scholar] [CrossRef]
- Watson, J.; Chow, J.; Lowenthal, D.; Chen, A.; Shaw, S.; Edgerton, E.; Blanchard, C. PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study. J. Air Waste Manag. Assoc. 2015, 65, 1104–1118. [Google Scholar] [CrossRef] [Green Version]
- Wiedinmyera, C.; Quayleb, B.; Geronc, C.; Belotea, A.; McKenzied, D.; Zhange, X.; Klos, K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Ying, Q.; Feng, M.; Song, D.; Wu, L.; Hu, J.; Zhang, H.; Li, X. Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Sci. Total. Environ. 2018, 624, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Arakia, S.; Shima, M.; Yamamoto, K. Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Sci. Total. Environ. 2018, 634, 1269–1277. [Google Scholar] [CrossRef]
- He, J.; Ding, S.; Liu, D. Exploring the spatiotemporal pattern of PM2.5 distribution and its determinants in Chinese cities based on a multilevel analysis approach. Sci. Total. Environ. 2019, 659, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Hu, Z.; Zhong, K.; Xu, J.; Zhang, F.; Zhao, Y.; Wu, P. Satellite-based high-resolution mapping of ground-level PM2.5 concentrations over East China using a spatiotemporal regression kriging model. Sci. Total. Environ. 2019, 672, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyoke, U.; Pak, K.; Pak, C. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China. Sci. Total. Environ. 2020, 699, 133561. [Google Scholar] [CrossRef]
- Mirzaei, M.; Bertazzon, S.; Couloigner, I. Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models. Atmosphere 2018, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Cameletti, M.; Ignaccolo, R.; Bande, S. Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics 2011, 22, 985–996. [Google Scholar] [CrossRef]
- Cocchi, D.; Greco, F.; Trivisano, C. Hierarchical space-time modelling of PM10 pollution. Atmos. Environ. 2007, 41, 532–542. [Google Scholar] [CrossRef]
- Fassò, A.; Finazzi, F. Maximum likelihood estimation of the dynamic coregionalization model with heterotopic data. Environmentrics 2011, 22, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S. Handbook of Statistics—Hierarchical Bayesian Models for Space–Time Air Pollution Data; Elsevier: Southampton, UK, 2012. [Google Scholar]
- Shaddick, G.; Thomas, M.L.; Jobling, A.; Brauer, M.; Donkelaar, A.V.; Burnett, R.; Prüss-Ustün, A. Data integration model for air quality: A hierarchical approach to the global estimation of exposures to ambient air pollution. R. Stat. Soc. 2018, 67, 231–253. [Google Scholar] [CrossRef]
- Tonellato, S. A multivariate time series model for the analysis and prediction of carbon monoxide atmospheric concentrations. J. R. Stat. Soc. Ser. C Appl. Stat. 2001, 50, 187–200. [Google Scholar] [CrossRef]
- Cameletti, M.; Lindgren, F.; Simpson, D.; Rue, H. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv. Stat. Anal. 2013, 97, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Balseca, J.; Pérez-Foguet, A. Modelling hourly spatio-temporal PM2.5 concentration in wildfire scenarios using dynamic linear models. Atmos. Res. 2020, 242, 104999. [Google Scholar] [CrossRef]
- Egozcue, J.; Daunis-i-Estadella, J.; Pawlowsky-Glahn, V.; Hron, K.; Filzmoser, P. Simplicial regression. The normal model. J. Appl. Probab. Stat. 2012, 6, 87–108. [Google Scholar]
- Filzmoser, P.; Hron, K.; Reimann, C. The bivariate statistical analysis of environmental (compositional) data. Sci. Total. Environ. 2010, 408, 4230–4238. [Google Scholar] [CrossRef] [PubMed]
- Buccianti, A.; Mateu, G.; Pawlowsky, V. Compositional Data Analysis in the Geosciences; Geological Society: London, UK, 2006. [Google Scholar]
- Egozcue, J.; Pawlowsky-Glahn, V. Groups of parts and their balances in compositional data analysis. Math. Geol. 2005, 37, 795–828. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Justice, C. MOD14A2 MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mod14a2v006/ (accessed on 15 September 2019). [CrossRef]
- Secretaria de Ambiente del DMQ. Reporte de Calidad de l Aire, Especies Medidas. 2015. Available online: http://190.11.24.212/reportes/ReporteHorariosData.aspx (accessed on 15 September 2018).
- Kuo, C.-L. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis. Astrophys. J. 2017, 848, 64. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Zhang, Y.; Chen, J.; Yu, Q.; Cheng, S.; Li, W.; Tian, H. Variation, sources and historical trend of black carbon in Beijing, China based on ground observation and MERRA-2 reanalysis data. Environ. Pollut. 2018, 245, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.; Murray, A. Fire Temperatures in Grass, shrub and Aspen Forest Communities of Central Alberta. J. Range Manag. 1980, 33, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Jolly, M.; Cochrane, M.; Freeborn, P.; Holden, Z.; Brown, T.; Williamson, G.; Bowman, D. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Liu, J.; Weng, F.; Li, Z.; Cribb, M. Hourly PM2.5 Estimates from a Geostationary Satellite Based on an Ensemble Learning Algorithm and Their Spatiotemporal Patterns over Central East China. Remote Sens. 2019, 11, 2120. [Google Scholar] [CrossRef] [Green Version]
- Cressie, N. Statistics for Spatial Data, Revised Edition; John Wiley & Sons: Michigan, MI, USA, 1993. [Google Scholar]
- Lindgren, F.; Rue, H. Bayesian Spatial Modelling with R-INLA. J. Stat. Softw. 2015, 63, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Balseca, J.; Pérez-Foguet, A. Spatio-temporal air pollution modelling using a compositional approach. Heliyon 2020, 6, e04794. [Google Scholar] [CrossRef] [PubMed]
- Van den Boogaart, K.G.; Tolosana-Delgado, R.; Bren, M. Compositions: Compositional Data Analysis. R Package Versión 1.40-2. 2018. Available online: https://cran.r-project.org/web/packages/compositions (accessed on 20 December 2018).
- Sánchez-Balseca, J.; Pérez-Foguet, A. Compositional Spatio-Temporal PM2.5 Modelling in Wildfires (R Script and Dataset) (V1.0) [Data set]. Zenodo. 2021. Available online: https://zenodo.org/record/5532476#.YVhE7y1t9AY (accessed on 27 September 2021). [CrossRef]
- Hron, K.; Templ, M.; Filzmoser, P. Imputation of Compositional Data Using Robust Methods. Department of Statistics and Probability Theory, Vienna University of Technology; Vienna University of Technology: Vienna, Austria, 2008. [Google Scholar]
- Martín-Fernández, J.; Barceló-Vidal, C.; Pawloswsky-Glahn, V. Dealing with zeros and missing values in compositional data sets using nonpara- metric imputation. Math. Geol. 2003, 35, 253–278. [Google Scholar] [CrossRef]
- Martín-Fernandez, J.A.; Raju, N.J.; Egozcue, J.J.; Pawlowsky-Glahn, V.; Olea, R.A. How to recover the original units for the estimates in compositional data analysis? In Proceedings of the 8th International Workshop on Compositional Data Analysis, CODAWORK, Terrassa, Spain, 3–8 June 2019. [Google Scholar]
- Si-Jia, L.; Dongsheng, W.; Xiao-Bing, L.; Zhanyong, W.; Ya, G.; Zhong-Ren, P. Three-dimensional distribution of fine particulate matter concentrations and synchronous meteorological data measured by an unmanned aerial vehicle (UAV) in Yangtze River Delta, China. Atmos. Meas. Technol. 2016, 1–19. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Pakbin, P.; Delfino, R.; Schauer, J.; Sioutas, C. Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles. Environ. Pollut. 2014, 187, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, D.J.; Kacarab, M.; Cocker, D.R.; Purvis-Roberts, K.L.; Silva, P. Effects of temperature on the formation of secondary organic aerosol from amine precursors. Aerosol Sci. Technol. 2016, 50, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Soleimanian, E.; Mousavi, A.; Taghvaee, S.; Sowlat, M.; Hasheminassab, S.; Polidori, A.; Sioutas, C. Spatial trends and sources of PM2.5 organic carbon volatility fractions (OCx) across the Los Angeles Basin. Atmos. Environ. 2019, 209, 201–211. [Google Scholar] [CrossRef]
- Takekawa, H.; Minoura, H.; Yamazaki, S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmos. Env. 2003, 37, 3413–3424. [Google Scholar] [CrossRef]
- Aitchison, J. The statistical analysis of compositional data (with discussion). J. R. Stat. Soc. 1982, 44, 139–177. [Google Scholar] [CrossRef]
Station Name | Station Code | Location | Elevation (m.a.l.s.) |
---|---|---|---|
Carapungo | ST_1 | 78°26′50″ W, 0°5′54″ S | 2851 |
Belisario | ST_2 | 78°29′24″ W, 0°10′48″ S | 2835 |
Cotocollao | ST_3 | 78°29′59.2″ W, 0°06′38.8″ S | 2739 |
Centro | ST_4 | 78°30′50.4″ W, 0°13′17.6″ S | 2820 |
Los Chillos | ST_5 | 78°27′18.8″ W, 0°17′49.5″ S | 2453 |
Covariates | Units | Temporal Resolution | Spatial Resolution | Source |
---|---|---|---|---|
Air temperature | K | Hourly | 0.5°×0.625° lat-lon | M2I1NXLFO.5.12.4 |
Pressure | mb | Hourly | 0.5°×0.625° lat-lon | M2T1NXRAD.5.12.4 |
Radiation | Wm−2 | Hourly | 0.5°×0.625° lat-lon | M2T1NXSLV.5.12.4 |
Surface temperature | K | Hourly | 0.5°×0.667° lat-lon | MAT1NXSLV |
Parameter | Mean | SD | 25% | 50% | 97.5% |
---|---|---|---|---|---|
0.082 | 0.0037 | 0.0753 | 0.0822 | 0.0900 | |
0.129 | 0.0080 | 0.1144 | 0.1295 | 0.1462 | |
ρ | 26.01 | 1.8850 | 22.648 | 25.872 | 30.039 |
0.754 | 0.0187 | 0.7160 | 0.7554 | 0.7897 |
Covariate | Mean | SD | 25% | 50% | 97.5% |
---|---|---|---|---|---|
Intercept | −12.618 | 0.0280 | −12.67 | −12.618 | −12.562 |
Altitude | −0.218 | 0.0362 | −0.289 | −0.218 | −0.147 |
UTMX | −0.058 | 0.0293 | −0.116 | −0.058 | −0.001 |
UTMY | 0.190 | 0.0240 | 0.1432 | 0.190 | 0.237 |
Air Temp. | −0.139 | 0.0275 | −0.1937 | −0.139 | −0.085 |
Pressure | 0.021 | 0.0092 | 0.0030 | 0.021 | 0.039 |
Radiation | −0.087 | 0.0227 | −0.1318 | −0.087 | −0.042 |
Surface Temp. | 0.022 | 0.0220 | −0.0214 | 0.0218 | 0.0650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Balseca, J.; Pérez-Foguet, A. Compositional Spatio-Temporal PM2.5 Modelling in Wildfires. Atmosphere 2021, 12, 1309. https://doi.org/10.3390/atmos12101309
Sánchez-Balseca J, Pérez-Foguet A. Compositional Spatio-Temporal PM2.5 Modelling in Wildfires. Atmosphere. 2021; 12(10):1309. https://doi.org/10.3390/atmos12101309
Chicago/Turabian StyleSánchez-Balseca, Joseph, and Agustií Pérez-Foguet. 2021. "Compositional Spatio-Temporal PM2.5 Modelling in Wildfires" Atmosphere 12, no. 10: 1309. https://doi.org/10.3390/atmos12101309
APA StyleSánchez-Balseca, J., & Pérez-Foguet, A. (2021). Compositional Spatio-Temporal PM2.5 Modelling in Wildfires. Atmosphere, 12(10), 1309. https://doi.org/10.3390/atmos12101309