Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Site
2.2. Measurements
2.3. Modelling
3. Results and Discussion
3.1. Characteristics of Atmospheric NH3 in Urban Area
3.2. Contribution of NH3 to PM2.5 Pollution
3.3. Origin of Total NH3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, R.; Tian, H.; Pan, S.; Prior, S.A.; Feng, Y.; Batchelor, W.D.; Chen, J.; Yang, J. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Chang. Biol. 2019, 25, 314–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.; Adalibieke, W.; Cui, X.; Winiwarter, W.; Reis, S.; Zhang, L.; Bai, Z.; Wang, Q.; Huang, W.; Zhou, F. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 2021, 55, 1329–1338. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B 2013, 368. [Google Scholar] [CrossRef]
- Koerkamp, P.W.G.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Weerden van der, T.J.; Jarvis, S.C. Ammonia emission factors for nitrogen fertilisers applied to two contrasting grassland soils. Environ. Pollut. 1997, 95, 205–211. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Tan, J.; Hua, Y.; Wu, D.; Hao, J. Variation of urban atmospheric ammonia pollution and its relation with PM2.5 chemical Property in winter of Beijing. China. Aerosol Air Qual. Res. 2016, 16, 1378–1389. [Google Scholar] [CrossRef] [Green Version]
- Huntzicker, J.J.; Cary, R.A.; Ling, C. Neutralization of sulfuric acid aerosol by ammonia. Environ. Sci. Technol. 1980, 14, 819–824. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, X.; Lin, W.; Ge, B.; Xie, Y.; Song, B.; Jia, S.; Zhang, R.; Peng, W.; Wang, Y.; et al. Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmos. Chem. Phys. 2018, 18, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Nan, J.; Shi, C.; Fu, Q.; Gao, S.; Wang, D.; Cui, H.; Saiz-Lopez, A.; Zhou, B. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci. Rep. 2015, 5, 15842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Ma, Z.; Zhang, J.; Du, H.; Chen, J.; Chen, H.; Yang, X.; Gao, W.; Geng, F. Important role of ammonia on haze formation in Shanghai. Environ. Res. Lett. 2011, 6, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.T.C.; Tsai, J.H.; Lin, J.M.; Huang, Y.S.; Chiang, H.L. Particulate matter and gaseous pollutants during a tropical storm and air pollution episode in Southern Taiwan. Atmos. Res. 2011, 99, 67–79. [Google Scholar] [CrossRef]
- Pinder, R.W.; Adams, P.J.; Pandis, S.N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Environ. Sci. Technol. 2007, 41, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Bhattarai, G.; Lee, J.B.; Kim, M.H.; Ham, S.; So, H.S.; Oh, S.; Sim, H.J.; Lee, J.C.; Song, M.; Kook, S.H. Maternal exposure to fine particulate matter during pregnancy induces progressive senescence of hematopoietic stem cells under preferential impairment of the bone marrow microenvironment and aids development of myeloproliferative disease. Leukemia 2020, 34, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Park, R.S.; Lee, S.; Shin, S.K.; Song, C.H. Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia. Atmos. Chem. Phys. 2014, 14, 2185–2201. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Penner, J.E. Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos. Chem. Phys. 2012, 12, 9479–9504. [Google Scholar] [CrossRef] [Green Version]
- Sung, M.Y.; Park, J.S.; Lim, J.H.; Park, H.Y.; Cho, S.Y.A. Long term trend of gaseous and particulate acid/base species and effects of ammonia reduction on nitrate contained in PM2.5. J. Korean Soc. Atmos. Environ. 2020, 36, 249–261. [Google Scholar] [CrossRef]
- Park, J.; Ryoo, J.; Jee, J.; Song, M. Origins and distributions of atmospheric ammonia in Jeonju during 2019~2020. J. Korean Soc. Atmos. Environ. 2020, 36, 2, 262–274. [Google Scholar] [CrossRef]
- Chang, Y.; Zou, Z.; Zhang, Y.; Deng, C.; Hu, J.; Shi, Z.; Dore, A.J.; Collett, J.L. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity. Environ. Sci. Technol. 2019, 53, 1822–1833. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, H.; Holsen, T.M.; Hopke, P.K.; Edgerton, E.S.; Schwab, J.J. Ambient ammonia concentrations across New York State. J. Geophys. Res. Atmos. 2019, 124, 8287–8302. [Google Scholar] [CrossRef] [Green Version]
- Huy, D.H.; Thanh, L.T.; Hien, T.T.; Noro, K.; Takenaka, N. Characteristics of ammonia gas and fine particulate ammonium from two distinct urban areas: Osaka, Japan, and Ho Chi Minh City, Vietnam. Environ. Sci. Pollut. Res. 2017, 24, 8147–8163. [Google Scholar] [CrossRef]
- Phan, N.T.; Kim, K.H.; Shon, Z.H.; Jeon, E.C.; Jung, K.; Kim, N.J. Analysis of ammonia variation in the urban atmosphere. Atmos. Environ. 2013, 65, 177–185. [Google Scholar] [CrossRef]
- Gong, L.; Lewicki, R.; Griffin, R.J.; Flynn, J.H.; Lefer, B.L.; Tittel, F.K. Atmospheric ammonia measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor. Atmos. Chem. Phys. 2011, 11, 9721–9733. [Google Scholar] [CrossRef] [Green Version]
- Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R.P.; Blom, M.J.; Querol, X. Summer ammonia measurements in a densely populated Mediterranean city. Atmos. Chem. Phys. 2012, 12, 7557–7575. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Karar, K.; Ayoob, S.; John, K. Spatio-temporal characteristics of gaseous and particulate pollutants in an urban region of Kolkata, India. Atmos. Res. 2008, 87, 103–115. [Google Scholar] [CrossRef]
- Lee, H.S.; Kang, C.M.; Kang, B.W.; Kim, H.K. Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmos. Environ. 1999, 33, 3143–3152. [Google Scholar] [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Thermodynamic prediction of the water activity, NH4NO3 dissociation constant, density and refractive index for the NH4NO3-(NH4)2SO4-H2O system at 25 °C. Atmos. Environ. 1982, 16, 2507–2514. [Google Scholar] [CrossRef]
- Doyle, G.J.; Tuazon, E.C.; Graham, R.A.; Mischke, T.M.; Winer, A.M.; Pitts, J.N. Simultaneous concentrations of ammonia and nitric acid in a polluted atmosphere and their equilibrium relationship to particulate ammonium nitrate. Environ. Sci. Technol. 1979, 13, 1416–1419. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, S.; Patra, A.K.; Kumar, P. Status and chemical characteristics of ambient PM2.5 pollutions in China: A review. Environ. Dev. Sustain. 2019, 21, 1649–1674. [Google Scholar] [CrossRef]
- Li, Y.J.; Sun, Y.; Zhang, Q.; Li, X.; Li, M.; Zhou, Z.; Chan, C.K. Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmos. Environ. 2017, 58, 270–304. [Google Scholar] [CrossRef]
- Cheng, Z.; Luo, L.; Wang, S.; Wang, Y.; Sharma, S.; Shimadera, H.; Wang, X.; Bressi, M.; de Miranda, R.M.; Jiang, J.; et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 2016, 89–90, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Philip, S.; Martin, R.V.; Van Donkelaar, A.; Lo, J.W.H.; Wang, Y.; Chen, D.; Zhang, L.; Kasibhatla, P.S.; Wang, S.; Zhang, Q.; et al. Global chemical composition of ambient fine particulate matter for exposure assessment. Environ. Sci. Technol. 2014, 48, 13060–13068. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zheng, N.; Zhang, Z. Stable nitrogen isotopic signatures reveal the NH4+ evolution processes in pollution episodes in urban southwestern China. Atmos. Res. 2021, 253, 105474. [Google Scholar] [CrossRef]
- Saraswati; Sharma, S.K.; Saxena, M.; Mandal, T.K. Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmos. Res. 2019, 218, 34–49. [Google Scholar] [CrossRef]
- Ge, B.; Xu, X.; Ma, Z.; Pan, X.; Wang, Z.; Lin, W.; Ouyang, B.; Xu, D.; Lee, J.; Zheng, M.; et al. Role of ammonia on the feedback between AWC and inorganic aerosol formation during heavy pollution in the North China Plain. Earth Space Sci. 2019, 6, 1675–1693. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Lin, W.; Zhang, R.; Han, Z.; Jia, X. Summertime ambient ammonia and its effects on ammonium aerosol in urban Beijing, China. Sci. Total Environ. 2017, 579, 1521–1530. [Google Scholar] [CrossRef]
- Edgerton, E.S.; Saylor, R.D.; Hartsell, B.E.; Jansen, J.J.; Alan Hansen, D. Ammonia and ammonium measurements from the southeastern United States. Atmos. Environ. 2007, 41, 3339–3351. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.; Shi, G.; Yu, H.; Zhang, Z.; Song, S.; Wang, W.; Liang, D.; Feng, Y. Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods. Atmos. Environ. 2020, 241, 117770. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Tan, T.; Zhu, Y.; Li, M.; Shang, D.; Wang, H.; Lu, K.; Guo, S.; Zeng, L.; et al. Aerosol liquid water driven by anthropogenic inorganic salts: Implying its key role in haze formation over the North China Plain. Environ. Sci. Technol. Lett. 2018, 5, 160–166. [Google Scholar] [CrossRef]
- Nguyen, T.K.V.; Zhang, Q.; Jimenez, J.L.; Pike, M.; Carlton, A.G. Liquid water: Ubiquitous contributor to aerosol mass. Environ. Sci. Technol. Lett. 2016, 3, 257–263. [Google Scholar] [CrossRef]
- Picarro Inc. G2103 Analyzer Datasheet—G2103-DS20-V1.2-AHDS-190917. 2019. Available online: http://www.picarro.com (accessed on 1 November 2021).
- Pogány, A.; Balslev-Harder, D.; Braban, C.F.; Cassidy, N.; Ebert, V.; Ferracci, V.; Hieta, T.; Leuenberger, D.; Martin, N.A.; Pascale, C.; et al. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air. Meas. Sci. Technol. 2016, 27, 115012. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Kong, S.; Zheng, H.; Chen, N.; Zhu, B.; Xu, K.; Cao, W.; Zhang, Y.; Zheng, M.; Cheng, Y.; et al. Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. Clim. Atmos. Sci. 2021, 4, 40. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Benjey, W.; Houyox, M.; Susick, J. Implementation of the SMOKE Emission Data Processor and SMOKE Tool Input Data Processor in Models-3. In Proceedings of the Emission Inventory Conference, Denver, CO, USA, 1–4 May 2001; Available online: https://cfpub.epa.gov (accessed on 20 November 2021).
- Park, R.J.; Oak, Y.J.; Emmons, L.K.; Kim, C.H.; Pfister, G.G.; Carmichael, G.R.; Saide, P.E.; Cho, S.-Y.; Kim, S.; Woo, J.-H.; et al. Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign. Elementa 2021, 9. [Google Scholar] [CrossRef]
- Woo, J.-H.; Kim, Y.; Kim, J.; Park, M.; Jang, Y.; Kim, J.; Bu, C.; Lee, Y.; Park, R.; Oak, Y.; et al. KORUS Emissions: A comprehensive Asian emissions information in support of the NASA/NIER KORUS-AQ mission. Elementa. 2021, in press. [Google Scholar]
- Clean Air Policy Support System (CAPSS). 2017 Korea National Air Pollutants Emission. 2019. Available online: https://airemiss.nier.go.kr (accessed on 1 May 2021).
- Burr, M.J.; Zhang, Y. Source apportionment of fine particulate matter over the Eastern US, Part I: Source sensitivity simulations using CMAQ with the Brute Force method. Atmos. Pollut. Res. 2011, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C.; Kim, E.; Bae, C.; Hoon Cho, J.; Kim, B.U.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. 2017, 17, 10315–10332. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Kim, B.U.; Kim, H.C.; Kim, S. Sensitivity of fine particulate matter concentrations in South Korea to regional ammonia emissions in Northeast Asia. Environ. Pollut. 2021, 273, 116428. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Kim, B.U.; Kim, H.C.; Kim, S. A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010–2017. Atmosphere 2020, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Q.; Zhang, Y.; Zheng, B.; Wang, K.; Chen, Y.; Wallington, T.J.; Han, W.; Shen, W.; Zhang, X. Source contributions of urban PM2.5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology. Atmos. Environ. 2015, 123, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Zbieranowski, A.L.; Aherne, J. Ambient concentrations of atmospheric ammonia, nitrogen dioxide and nitric acid across a rural-urban-agricultural transect in southern Ontario, Canada. Atmos. Environ. 2012, 62, 481–491. [Google Scholar] [CrossRef]
- Dammers, E.; Schaap, M.; Haaima, M.; Palm, M.; Kruit, R.J.W.; Volten, H.; Hensen, A.; Swart, D.; Erisman, J.W. Measuring atmospheric ammonia with remote sensing campaign: Part 1—Characterisation of vertical ammonia concentration profile in the centre of The Netherlands. Atmos. Environ. 2017, 169, 97–112. [Google Scholar] [CrossRef]
- Zöll, U.; Brümmer, C.; Schrader, F.; Ammann, C.; Ibrom, A.; Flechard, C.R.; Nelson, D.D.; Zahniser, M.; Kutsch, W.L. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modelling. Atmos. Chem. Phys. 2016, 16, 11283–11299. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Kim, S.; Lee, J.; Park, J.; Jee, J.; Hong, S.; Kwon, K.; Song, M. Spatial distributions of atmospheric ammonia in a rural area in south Korea and the associated impact on a nearby urban area. Atmosphere 2021, 12, 1411. [Google Scholar] [CrossRef]
- Jo, G.; Kim, D.; Song, M. PM2.5 Concentrations and Chemical Compositions in Jeonju from 2017 to 2018. J. Korean Soc. Atmos. Environ. 2018, 34, 876–888. [Google Scholar] [CrossRef]
- Mutuku, K.J.; Lee, Y.Y.; Chang-Chien, G.P.; Lin, S.L.; Chen, W.H.; Hou, W.C. Chemical fingerprints for PM2.5 in the ambient air near a raw material storage site for iron ore, coal, limestone, and sinter. Aerosol Air Qual. Res. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Ricciardelli, I.; Bacco, D.; Rinaldi, M.; Bonafè, G.; Scotto, F.; Trentini, A.; Bertacci, G.; Ugolini, P.; Zigola, C.; Rovere, F.; et al. A three-year investigation of daily PM2.5 main chemical components in four sites: The routine measurement program of the Supersito Project (Po Valley, Italy). Atmos. Environ. 2017, 152, 418–430. [Google Scholar] [CrossRef]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Air Quality Guidelines: Global Update 2005; WHO: Geneva, Switzerland, 2006; Available online: https://wedocs.unep.org/20.500.11822/8712 (accessed on 20 November 2021).
- Hu, G.; Zhang, Y.; Sun, J.; Zhang, L.; Shen, X.; Lin, W.; Yang, Y. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos. Res. 2014, 145–146, 1–11. [Google Scholar] [CrossRef]
- Seinfeld, J.; Pandis, S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Pinder, R.W.; Dennis, R.L.; Bhave, P.V. Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmos. Environ. 2008, 42, 1275–1286. [Google Scholar] [CrossRef]
- Winston, P.W.; Bates, D.H. Saturated solutions for the control of humidity in biological research. Ecology 1960, 41, 232–237. [Google Scholar] [CrossRef]
- Kim, E.; Kim, B.U.; Kim, H.C.; Kim, S. Direct and cross impacts of upwind emission control on downwind PM2.5 under various NH3 conditions in Northeast Asia. Environ. Pollut. 2021, 268, 115794. [Google Scholar] [CrossRef]
- Kumar, N.; Park, R.J.; Jeong, J.I.; Woo, J.H.; Kim, Y.; Johnson, J.; Yarwood, G.; Kang, S.; Chun, S.; Knipping, E. Contributions of International Sources to PM2.5 in South Korea. Atmos. Environ. 2021, 118542. [Google Scholar] [CrossRef]
- Bae, C.; Kim, B.U.; Kim, H.C.; Yoo, C.; Kim, S. Long-range transport influence on key chemical components of PM2.5 in the Seoul Metropolitan Area, South Korea, during the years 2012–2016. Atmosphere 2020, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Henze, D.K.; Bash, J.O.; Cady-Pereira, K.E.; Shephard, M.W.; Luo, M.; Capps, S.L. Sources and impacts of atmospheric NH3: Current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr. Pollut. Rep. 2015, 1, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Galperin, M.V.; Sofiev, M.A. The long-range transport of ammonia and ammonium in the Northern Hemisphere. Atmos. Environ. 1998, 32, 373–380. [Google Scholar] [CrossRef]
Location | Period | Type | NH3 (Mean ± Std) (Unit: ppb) | Reference |
---|---|---|---|---|
Jeonju, Korea | May 2019–April 2020 | Urban | 10.5 ± 4.8 | This study |
Seoul, Korea | October 1996–September 1997 September 2010–August 2011 | Urban | 6.0 10.9 ± 4.25 | Lee et al., 1999 [27] Phan et al., 2013 [23] |
Shanghai, China | July 2013–September 2014 | Urban Rural Industrial | 6.2 ± 4.6 12.4 ± 9.1 17.6 ± 9 | Wang et al., 2015 [9] |
Osaka, Japan | February–March 2015 July–September 2015 | Urban | 1.98 ± 0.93 4.21 ± 2.30 | Huy et al., 2017 [22] |
New Delhi, India | January 2013–December 2015 | Urban | 19.6 ± 3.5 | Saraswati et al., 2019 [36] |
Ho Chi Minh, Vietnam | May 2015–June 2015 | Urban | 8.34 ± 2.47 | Huy et al., 2017 [22] |
Ontario, Canada | March 2010–March 2011 | Rural | 4.7 | Zbieranowski and Aherne 2012 [59] |
Barcelona, Spain | May 2011–September 2011 May 2011–June 2011 | Urban background Urban | 2.9 ± 1.3 7.5 ± 2.8 | Pandolfi et al., 2012 [25] |
Houston, TX, USA | February 2010–March 2010 August 2010–September 2010 | Urban | 2.4 ± 1.2 3.1 ± 2.9 | Gong et al., 2011 [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, E.; Oh, S.; Kim, H.; Kim, S.; Kim, Y.P.; Song, M. Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area. Atmosphere 2021, 12, 1676. https://doi.org/10.3390/atmos12121676
Park J, Kim E, Oh S, Kim H, Kim S, Kim YP, Song M. Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area. Atmosphere. 2021; 12(12):1676. https://doi.org/10.3390/atmos12121676
Chicago/Turabian StylePark, Junsu, Eunhye Kim, Sangmin Oh, Haeri Kim, Soontae Kim, Yong Pyo Kim, and Mijung Song. 2021. "Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area" Atmosphere 12, no. 12: 1676. https://doi.org/10.3390/atmos12121676
APA StylePark, J., Kim, E., Oh, S., Kim, H., Kim, S., Kim, Y. P., & Song, M. (2021). Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area. Atmosphere, 12(12), 1676. https://doi.org/10.3390/atmos12121676