Polar Amplification and Ice Free Conditions under 1.5, 2 and 3 °C of Global Warming as Simulated by CMIP5 and CMIP6 Models
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Climate Simulations
3. Results and Discussion
3.1. Sea Ice Seasonal Cycle
3.2. Polar Amplification
3.3. Initial Timing of 1.5, 2 and 3 °C Mean Global Warming
3.4. Polar Amplification under 1.5, 2 and 3 °C Mean Global Warming
3.5. Projections of Future Ice-Free Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 31 August 2021).
- Farinosi, F.; Dosio, A.; Calliari, E.; Seliger, R.; Alfieri, L.; Naumann, G. Will the Paris Agreement protect us from hydro-meteorological extremes? Environ. Res. Lett. 2020, 15, 104037. [Google Scholar] [CrossRef]
- Jacob, D.; Kotova, L.; Teichmann, C.; Sobolowski, S.P.; Vautard, R.; Donnelly, C.; Koutroulis, A.; Grillakis, M.; Tsanis, I.K.; Damm, A.; et al. Climate Impacts in Europe Under +1.5 °C Global Warming. Earth’s Future 2018, 6, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.C.; King, A.D.; Perkins-Kirkpatrick, S.; Mitchell, D. Regional hotspots of temperature extremes under 1.5 °C and 2 °C of global mean warming. Weather. Clim. Extremes 2019, 26, 100233. [Google Scholar] [CrossRef]
- Screen, J.A.; Williamson, D. Ice-Free Arctic at 1.5 °C? Nat. Clim. Chang. 2017, 7, 230–231. [Google Scholar] [CrossRef] [Green Version]
- King, A.D.; Harrington, L.J. The Inequality of Climate Change From 1.5 to 2 °C of Global Warming. Geophys. Res. Lett. 2018, 45, 5030–5033. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Sigmond, M.; Fyfe, J.C.; Swart, N.C. Ice-free Arctic projections under the Paris Agreement. Nat. Clim. Chang. 2018, 8, 404–408. [Google Scholar] [CrossRef]
- Mitchell, D.; James, R.; Forster, P.M.; Betts, R.A.; Shiogama, H.; Allen, M. Realizing the impacts of a 1.5 °C warmer world. Nat. Clim. Chang. 2016, 6, 735–737. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Screen, J.A.; Deser, C.; Cohen, J.; Fyfe, J.C.; García-Serrano, J.; Jung, T.; Kattsov, V.; Matei, D.; Msadek, R.; et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev. 2019, 12, 1139–1164. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Bitz, C.M.; Armour, K.C.; Proistosescu, C.; Kang, S.M.; Xie, S.-P.; Kim, D.; McGregor, S.; Zhang, W.; Zhao, S.; et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang. 2018, 8, 1076–1081. [Google Scholar] [CrossRef]
- Salzmann, M. The polar amplification asymmetry: Role of Antarctic surface height. Earth Syst. Dyn. 2017, 8, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Graversen, R.G.; Langen, P.L. On the Role of the Atmospheric Energy Transport in 2 × CO2–Induced Polar Amplification in CESM1. J. Clim. 2019, 32, 3941–3956. [Google Scholar] [CrossRef]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Francis, J.A. The Arctic Amplification Debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V. Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming. J. Clim. 2010, 23, 3888–3906. [Google Scholar] [CrossRef]
- Hall, A. The Role of Surface Albedo Feedback in Climate. J. Clim. 2003, 17, 1550–1568. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef] [Green Version]
- Holland, P.R. The seasonality of Antarctic sea ice trends. Geophys. Res. Lett. 2014, 41, 4230–4237. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Phillips, T.; Marshall, G.J.; Hosking, J.S.; Pope, J.O.; Bracegirdle, T.J.; Deb, P. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 2017, 44, 6868–6875. [Google Scholar] [CrossRef] [Green Version]
- Bintanja, R.; van Oldenborgh, G.; Katsman, C. The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol. 2015, 56, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.C.; Armour, K.C.; Scott, J.R.; Kostov, Y.K.; Hausmann, U.; Ferreira, D.; Shepherd, T.G.; Bitz, C. The ocean’s role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swart, N.C.; Fyfe, J.C. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 2013, 40, 4328–4332. [Google Scholar] [CrossRef]
- Bintanja, R.; Van Oldenborgh, G.J.; Drijfhout, S.S.; Wouters, B.; Katsman, C.A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 2013, 6, 376–379. [Google Scholar] [CrossRef]
- Shu, Q.; Wang, Q.; Song, Z.; Qiao, F.; Zhao, J.; Chu, M.; Li, X. Assessment of Sea Ice Extent in CMIP6 With Comparison to Observations and CMIP5. Geophys. Res. Lett. 2020, 47, e2020GL087965. [Google Scholar] [CrossRef]
- Roach, L.A.; Dörr, J.; Holmes, C.R.; Massonnet, F.; Blockley, E.W.; Notz, D.; Rackow, T.; Raphael, M.N.; O’farrell, S.; Bai-ley, D.A.; et al. Antarctic Sea Ice Area in CMIP6. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Shu, Q.; Song, Z.; Qiao, F. Assessment of sea ice simulations in the CMIP5 models. Cryosphere 2015, 9, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Bracegirdle, T.; Phillips, T.; Marshall, G.J.; Hosking, S. An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. J. Clim. 2013, 26, 1473–1484. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, F.; de Souza, R.B.; Nobre, P.; Marquez, A.L. An inter-hemispheric seasonal comparison of polar amplification using radiative forcing of a quadrupling CO2 experiment. Ann. Geophys. 2020, 38, 1123–1138. [Google Scholar] [CrossRef]
- Diebold, F.X.; Rudebusch, G.D.; Barrett, A.; Goulet Coulombe, P.; Engle, R.; Göbel, M.; Hankel, C.; Hausfather, Z.; Hen-Dry, D.; Hillebrand, E.; et al. Nber Working Paper Series Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections. J. Econom. 2021. Available online: https://www.nber.org/papers/w28228 (accessed on 5 September 2021). [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.A.; Dethloff, K.; Entekhabi, D.; Overland, J.E.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Zhang, X.; Yang, X.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 2013, 8, 014036. [Google Scholar] [CrossRef]
- Wang, M.; Overland, J.E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Schleussner, C.-F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Mi-Crowave Data; Version 1; 1996; Available online: https://doi.org/10.5067/8GQ8LZQVL0VL (accessed on 5 September 2021).
- Sorteberg, A.; Kattsov, V.; Walsh, J.; Pavlova, T. The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim. Dyn. 2007, 29, 131–156. [Google Scholar] [CrossRef]
- Karlsson, J.; Svensson, G. Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophys. Res. Lett. 2013, 40, 4374–4379. [Google Scholar] [CrossRef]
- Notz, D. SIMIP Community Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Skagseth, Ø.; Furevik, T.; Ingvaldsen, R.; Loeng, H.; Mork, A.; Orvik, A.; Ozhigin, V. Volume and Heat Transports to the Arctic Ocean via the Norwegian and Barents Seas; Springer: Dordrecht, The Netherland, 2008. [Google Scholar]
- Previdi, M.; Janoski, T.P.; Chiodo, G.; Smith, K.L.; Polvani, L.M. Arctic Amplification: A Rapid Response to Radiative Forcing. Geophys. Res. Lett. 2020, 47, e2020GL089933. [Google Scholar] [CrossRef]
- Stjern, C.W.; Lund, M.T.; Samset, B.H.; Myhre, G.; Forster, P.M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Iversen, T.; et al. Arctic Amplification Response to Individual Climate Drivers. J. Geophys. Res. Atmos. 2019, 124, 6698–6717. [Google Scholar] [CrossRef]
- Singh, H.A.; Rasch, P.J.; Rose, B.E.J. Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming. Geophys. Res. Lett. 2017, 44, 10583–10591. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Chen, D.; Cui, H.; Ge, Q. Overestimated climate warming and climate variability due to spatially homogeneous CO2 in climate modeling over the Northern Hemisphere since the mid-19th century. Sci. Rep. 2019, 9, 17426. [Google Scholar] [CrossRef]
- Navarro, A.; Moreno, R.; Tapiador, F.J. Improving the representation of anthropogenic CO2 emissions in climate models: Impact of a new parameterization for the Community Earth System Model (CESM). Earth Syst. Dyn. 2018, 9, 1045–1062. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Wang, M. The 2020 Siberian heat wave. Int. J. Clim. 2020, 41, E2341–E2346. [Google Scholar] [CrossRef]
- Hanna, E.; Nolan, J.E.; Overland, J.E.; Hall, R.J. Climate Change in the Arctic. Arct. Ecol. 2021, 168, 9. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Monaghan, A.; Lazzara, M.; Keller, L.M.; Weidner, G.A.; Wilson, A.B. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 2012, 6, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Dennis, P.; Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; King, J.C.; Pudsey, C.J. Recent Rapid Regional Climate Warming on the Antarctic Peninsula Related Papers Ice Core Evidence for Significant 100-Year Regional Warming on t He Ant Arct Ic Peninsula Recent Rapid Regional Cli-Mate Warming on the Antarctic Peninsula. Clim. Chang. 2003. Available online: https://link.springer.com/article/10.1023/A:1026021217991#citeas (accessed on 5 September 2021).
- Pfeifer, S.; Rechid, D.; Reuter, M.; Viktor, E.; Jacob, D. 1.5°, 2°, and 3° Global Warming: Visualizing European Regions 722 Affected by Multiple Changes. Reg. Environ. Chang. 2019, 19, 1777–1786. [Google Scholar] [CrossRef] [Green Version]
- Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; van Vliet, M.T.; Bréon, F.-M. Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming. Environ. Res. Lett. 2018, 13, 044024. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Kjellström, E.; Nikulin, G.; Strandberg, G.; Christensen, O.B.; Jacob, D.; Keuler, K.; Lenderink, G.; van Meijgaard, E.; Schär, C.; Somot, S.; et al. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst. Dyn. 2018, 9, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.I.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- Hahn, L.C.; Armour, K.C.; Zelinka, M.D.; Bitz, C.M.; Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Hahn, L.C.; Armour, K.C.; Battisti, D.S.; Donohoe, A.; Pauling, A.G.; Bitz, C.M. Antarctic Elevation Drives Hemispheric Asymmetry in Polar Lapse Rate Climatology and Feedback. Geophys. Res. Lett. 2020, 47, e2020GL088965. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casagrande, F.; Neto, F.A.B.; de Souza, R.B.; Nobre, P. Polar Amplification and Ice Free Conditions under 1.5, 2 and 3 °C of Global Warming as Simulated by CMIP5 and CMIP6 Models. Atmosphere 2021, 12, 1494. https://doi.org/10.3390/atmos12111494
Casagrande F, Neto FAB, de Souza RB, Nobre P. Polar Amplification and Ice Free Conditions under 1.5, 2 and 3 °C of Global Warming as Simulated by CMIP5 and CMIP6 Models. Atmosphere. 2021; 12(11):1494. https://doi.org/10.3390/atmos12111494
Chicago/Turabian StyleCasagrande, Fernanda, Francisco A. B. Neto, Ronald B. de Souza, and Paulo Nobre. 2021. "Polar Amplification and Ice Free Conditions under 1.5, 2 and 3 °C of Global Warming as Simulated by CMIP5 and CMIP6 Models" Atmosphere 12, no. 11: 1494. https://doi.org/10.3390/atmos12111494
APA StyleCasagrande, F., Neto, F. A. B., de Souza, R. B., & Nobre, P. (2021). Polar Amplification and Ice Free Conditions under 1.5, 2 and 3 °C of Global Warming as Simulated by CMIP5 and CMIP6 Models. Atmosphere, 12(11), 1494. https://doi.org/10.3390/atmos12111494