The Effects of Climate Therapy on Cardiorespiratory Fitness and Exercise-Induced Bronchoconstriction in Children with Asthma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rijssenbeek-Nouwens, L.H.; Bel, E.H. High-altitude treatment: A therapeutic option for patients with severe, refractory asthma? Clin. Exp. Allergy 2011, 41, 775–782. [Google Scholar] [CrossRef]
- Warner, J.O. Asthma, allergen avoidance and residence at high altitude. Pediatric Allergy Immunol. 2009, 20, 509. [Google Scholar] [CrossRef]
- Massimo, T.; Blank, C.; Strasser, B.; Schobersberger, W. Does climate therapy at moderate altitudes improve pulmonary function in asthma patients? A systematic review. Sleep Breath. 2014, 18, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Christie, P.E.; Yntema, J.L.; Tagari, P.; Ysselstijn, H.; Ford-Hutchinson, A.W.; Lee, T.H. Effect of altitude on urinary leukotriene (LT) E4 excretion and airway responsiveness to histamine in children with atopic asthma. Eur. Respir. J. 1995, 8, 357–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, D.A.; Ehmann, R.; Hall, G.L.; Moeller, A.; Hamacher, J.; Frey, U.; Sennhauser, F.H.; Wildhaber, J.H. Correlation of nitrites in breath condensates and lung function in asthmatic children. Pediatric Allergy Immunol. 2004, 15, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Vinnikov, D.; Khafagy, A.; Blanc, P.D.; Brimkulov, N.; Steinmaus, C. High-altitude alpine therapy and lung function in asthma: Systematic review and meta-analysis. ERJ Open Res. 2016, 2, 00097-2015. [Google Scholar] [CrossRef] [Green Version]
- Saglani, S.; Fleming, L.; Sonnappa, S.; Bush, A. Advances in the aetiology, management, and prevention of acute asthma attacks in children. Lancet Child Adolesc. Health 2019, 3, 354–364. [Google Scholar] [CrossRef]
- Bersuch, E.; Gräf, F.; Renner, E.D.; Jung, A.; Traidl-Hoffmann, C.; Lauener, R.; Roduit, C. Lung function improvement and airways inflammation reduction in asthmatic children after a rehabilitation program at moderate altitude. Pediatric Allergy Immunol. 2017, 28, 768–775. [Google Scholar] [CrossRef]
- Peroni, D.G.; Boner, A.L.; Vallone, G.; Antolini, I.; Warner, J.O. Effective allergen avoidance at high altitude reduces allergen-induced bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 1994, 149, 1442–1446. [Google Scholar] [CrossRef]
- Piacentini, G.L.; Peroni, D.G.; Bodini, A.; Boner, A.L. Exhaled nitric oxide in children with asthma at high altitude. J. Allergy Clin. Immunol. 2007, 120, 1226–1227. [Google Scholar] [CrossRef]
- McNarry, M.A.; Boddy, L.M.; Stratton, G.S. The relationship between body mass index, aerobic performance and asthma in a pre-pubertal, population-level cohort. Eur. J. Appl. Physiol. 2014, 114, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Strunk, R.C.; Rubin, D.; Kelly, L.; Sherman, B.; Fukuhara, J. Determination of fitness in children with asthma. Use of standardized tests for functional endurance, body fat composition, flexibility, and abdominal strength. Am. J. Dis. Child. 1988, 142, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Ahmaidi, S.B.; Varray, A.L.; Savy-Pacaux, A.M.; Prefaut, C.G. Cardiorespiratory fitness evaluation by the shuttle test in asthmatic subjects during aerobic training. Chest 1993, 103, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Santuz, P.; Baraldi, E.; Filippone, M.; Zacchello, F. Exercise performance in children with asthma: Is it different from that of healthy controls? Eur. Respir. J. 1997, 10, 1254–1260. [Google Scholar] [CrossRef]
- Wong, T.W.; Yu, T.S.; Wang, X.R.; Robinson, P. Predicted maximal oxygen uptake in normal Hong Kong Chinese schoolchildren and those with respiratory diseases. Pediatric Pulmonol. 2001, 31, 126–132. [Google Scholar] [CrossRef]
- Lochte, L. Predicted aerobic capacity of asthmatic children: A research study from clinical origin. Pulm. Med. 2012, 2012, 854652. [Google Scholar] [CrossRef] [Green Version]
- Fink, G.; Kaye, C.; Blau, H.; Spitzer, S.A. Assessment of exercise capacity in asthmatic children with various degrees of activity. Pediatric Pulmonol. 1993, 15, 41–43. [Google Scholar] [CrossRef]
- Lang, D.M.; Butz, A.M.; Duggan, A.K.; Serwint, J.R. Physical activity in urban school-aged children with asthma. Pediatrics 2004, 113, e341–e346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pianosi, P.T.; Davis, H.S. Determinants of physical fitness in children with asthma. Pediatrics 2004, 113, e225–e229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neder, J.A.; Nery, L.E.; Silva, A.C.; Cabral, A.L.; Fernandes, A.L. Short-term effects of aerobic training in the clinical management of moderate to severe asthma in children. Thorax 1999, 54, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Thio, B.J.; Nagelkerke, A.F.; Ketel, A.G.; van Keeken, B.L.; Dankert-Roelse, J.E. Exercise-induced asthma and cardiovascular fitness in asthmatic children. Thorax 1996, 51, 207–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiler, J.M.; Bonini, S.; Coifman, R.; Craig, T.; Delgado, L.; Capão-Filipe, M.; Passali, D.; Randolph, C.; Storms, W. American Academy of Allergy, Asthma & Immunology Work Group report: Exercise-induced asthma. J. Allergy Clin. Immunol. 2007, 119, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Anderton, R.C.; Cuff, M.T.; Frith, P.A.; Cockcroft, D.W.; Morse, J.L.; Jones, N.L.; Hargreave, F.E. Bronchial responsiveness to inhaled histamine and exercise. J. Allergy Clin. Immunol. 1979, 63, 315–320. [Google Scholar] [CrossRef]
- Duong, M.; Subbarao, P.; Adelroth, E.; Obminski, G.; Strinich, T.; Inman, M.; Pedersen, S.; O’Byrne, P.M. Sputum eosinophils and the response of exercise-induced bronchoconstriction to corticosteroid in asthma. Chest 2008, 133, 404–411. [Google Scholar] [CrossRef]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Hankinson, J.L.; Irvin, C.G.; MacIntyre, N.R.; McKay, R.T.; Wanger, J.S.; Anderson, S.D.; et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329. [Google Scholar] [CrossRef] [Green Version]
- Chinellato, I.; Piazza, M.; Sandri, M.; Cardinale, F.; Peroni, D.G.; Boner, A.L.; Piacentini, G.L. Evaluation of association between exercise-induced bronchoconstriction and childhood asthma control test questionnaire scores in children. Pediatric Pulmonol. 2012, 47, 226–232. [Google Scholar] [CrossRef]
- Jayasinghe, H.; Kopsaftis, Z.; Carson, K. Asthma Bronchiale and Exercise-Induced Bronchoconstriction. Respir. Int. Rev. Thorac. Dis. 2015, 89, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Jung, J.W.; Cho, S.H.; Min, K.U.; Kang, H.R. What makes a difference in exercise-induced bronchoconstriction: An 8 year retrospective analysis. PLoS ONE 2014, 9, e87155. [Google Scholar] [CrossRef]
- Boulet, L.P.; O’Byrne, P.M. Asthma and exercise-induced bronchoconstriction in athletes. N. Engl. J. Med. 2015, 372, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Jung, A.; Heinrichs, I.; Geidel, C.; Lauener, R. Inpatient paediatric rehabilitation in chronic respiratory disorders. Paediatr. Respir. Rev. 2012, 13, 123–129. [Google Scholar] [CrossRef]
- Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. 2018, p. 17, box 12.12. Available online: https://ginasthma.org/ (accessed on 7 November 2021).
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkby, J.; Welsh, L.; Lum, S.; Fawke, J.; Rowell, V.; Thomas, S.; Marlow, N.; Stocks, J. The EPICure study: Comparison of pediatric spirometry in community and laboratory settings. Pediatric Pulmonol. 2008, 43, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Léger, L.A.; Olds, T.S.; Cazorla, G. Secular trends in the performance of children and adolescents (1980–2000): An analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports Med. 2003, 33, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.J.; Fraser, M.; Lizamore, C.A.; Draper, N.; Shearman, J.P.; Kimber, N.E. Measurement of cardiorespiratory fitness in children from two commonly used field tests after accounting for body fatness and maturity. J. Hum. Kinet. 2014, 40, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.Y.; Plowman, S.A.; Looney, M.A. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res. Q. Exerc. Sport 1992, 63, 360–365. [Google Scholar] [CrossRef]
- van Mechelen, W.; Hlobil, H.; Kemper, H.C. Validation of two running tests as estimates of maximal aerobic power in children. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- De Miguel-Etayo, P.; Gracia-Marco, L.; Ortega, F.B.; Intemann, T.; Foraita, R.; Lissner, L.; Oja, L.; Barba, G.; Michels, N.; Tornaritis, M.; et al. Physical fitness reference standards in European children: The IDEFICS study. Int. J. Obes. 2014, 38 (Suppl. 2), S57–S66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S.; Dale, M.; LeBlanc, A.G.; Belanger, K.; Ortega, F.B.; Léger, L. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br. J. Sports Med. 2017, 51, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, E.R.; Goleva, E.; Jackson, L.P.; Stevens, A.D.; Leung, D.Y. Vitamin D levels, lung function, and steroid response in adult asthma. Am. J. Respir. Crit. Care Med. 2010, 181, 699–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peroni, D.G.; Piacentini, G.L.; Vicentini, L.; Costella, S.; Pietrobelli, A.; Boner, A.L. Effective allergen avoidance reduces residual volume and sputum eosinophils in children with asthma. J. Allergy Clin. Immunol. 2001, 108, 308. [Google Scholar] [CrossRef] [PubMed]
- Bodini, A.; Peroni, D.; Vicentini, L.; Loiacono, A.; Baraldi, E.; Ghiro, L.; Corradi, M.; Alinovi, R.; Boner, A.L.; Piacentini, G.L. Exhaled breath condensate eicosanoids and sputum eosinophils in asthmatic children: A pilot study. Pediatric Allergy Immunol. 2004, 15, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Babb, T.G.; Viggiano, R.; Hurley, B.; Staats, B.; Rodarte, J.R. Effect of mild-to-moderate airflow limitation on exercise capacity. J. Appl. Physiol. 1991, 70, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Renzetti, G.; Silvestre, G.; D’Amario, C.; Bottini, E.; Gloria-Bottini, F.; Bottini, N.; Auais, A.; Perez, M.K.; Piedimonte, G. Less air pollution leads to rapid reduction of airway inflammation and improved airway function in asthmatic children. Pediatrics 2009, 123, 1051–1058. [Google Scholar] [CrossRef]
- Hashimoto, S.; Bel, E.H. Current treatment of severe asthma. Clin. Exp. Allergy 2012, 42, 693–705. [Google Scholar] [CrossRef]
- Mendes, F.A.; Almeida, F.M.; Cukier, A.; Stelmach, R.; Jacob-Filho, W.; Martins, M.A.; Carvalho, C.R. Effects of aerobic training on airway inflammation in asthmatic patients. Med. Sci. Sports Exerc. 2011, 43, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Mokhallati, N.; Guilbert, T.W. Moving towards precision care for childhood asthma. Curr. Opin. Pediatrics 2016, 28, 331–338. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Holstius, D.M.; Pillarisetti, A.; Smith, K.R.; Seto, E. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. 2014, 7, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Bitsko, M.J.; Everhart, R.S.; Rubin, B.K. The adolescent with asthma. Paediatr. Respir. Rev. 2014, 15, 146–153. [Google Scholar] [CrossRef] [PubMed]
Asthma Camp Day 1 | Asthma Camp Day 7 | Difference between Means Day 7 and Day 1 (95% CI) | |
---|---|---|---|
N. Subjects (boys/girls) | 24 (14/10) | ||
zFEV1 pre-exercise | 0.10 (0.95) | 0.21 (0.96) | 0.11 (−0.45; 0.65) |
zFVC pre-exercise | 0.09 (0.96) | 0.49 (0.94) | 0.40 (−0.15; 0.95) |
zFEV1/FVC pre-exercise | −0.02 (1.01) | −0.50 (0.84) | −0.48 (−1.05; 0.06) |
p | |||
Frequency of EIB | 14 (58%) | 8 (33%) | 0.08 |
Frequency of 20mSRT performance <25° pc | 11 (45%) | 4 (16%) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pieri, C.; Arigliani, M.; Francescato, M.P.; Droli, M.; Vidoni, M.; Liguoro, I.; Ferrari, M.E.; Cogo, P.; Canciani, M.C. The Effects of Climate Therapy on Cardiorespiratory Fitness and Exercise-Induced Bronchoconstriction in Children with Asthma. Atmosphere 2021, 12, 1486. https://doi.org/10.3390/atmos12111486
De Pieri C, Arigliani M, Francescato MP, Droli M, Vidoni M, Liguoro I, Ferrari ME, Cogo P, Canciani MC. The Effects of Climate Therapy on Cardiorespiratory Fitness and Exercise-Induced Bronchoconstriction in Children with Asthma. Atmosphere. 2021; 12(11):1486. https://doi.org/10.3390/atmos12111486
Chicago/Turabian StyleDe Pieri, Carlo, Michele Arigliani, Maria Pia Francescato, Maurizio Droli, Michael Vidoni, Ilaria Liguoro, Maria Elena Ferrari, Paola Cogo, and Mario Canciano Canciani. 2021. "The Effects of Climate Therapy on Cardiorespiratory Fitness and Exercise-Induced Bronchoconstriction in Children with Asthma" Atmosphere 12, no. 11: 1486. https://doi.org/10.3390/atmos12111486
APA StyleDe Pieri, C., Arigliani, M., Francescato, M. P., Droli, M., Vidoni, M., Liguoro, I., Ferrari, M. E., Cogo, P., & Canciani, M. C. (2021). The Effects of Climate Therapy on Cardiorespiratory Fitness and Exercise-Induced Bronchoconstriction in Children with Asthma. Atmosphere, 12(11), 1486. https://doi.org/10.3390/atmos12111486