A New Separation Methodology for the Maritime Sector Emissions over the Mediterranean and Black Sea Regions
Abstract
:1. Introduction
2. Data and Methods
2.1. The EMODnet Database
- Emissionsi,j,k: emissions per vessel type, pixel, and time period,
- i: vessel type,
- j: pixel,
- k: time period,
- vessel densityi,j,k: vessel density of each vessel type per pixel and time period,
- total vessel denistyj,k: total vessel density per time period,
- CBG_emissionsj,k: CAMS-GLOB-SHIP v2.1 emissions per time period.
2.2. The CAMS-GLOB-SHIP v2.1 Emissions Inventory
2.3. The S5P/TROPOMI Tropospheric NO2 Vertical Column Densities
2.4. The LOTOS-EUROS CTM Simulations
2.5. Roadmap of This Study
3. Results
3.1. Separation of CAMS-GLOB-SHIP Shipping Lanes Based on the EMODnet Dataset
3.1.1. Annual Variability of the CAMS-GLOB-SHIP Emissions
3.1.2. Seasonal Variability of the CAMS-GLOB-SHIP Emissions
3.2. First Application of EMODnet Separations on TROPOMI Observations and LOTOS-EUROS Simulations
3.2.1. Annual Variability of the TROPOMI and LOTOS-EUROS VCDs
3.2.2. Seasonal Variability of the TROPOMI and LOTOS-EUROS VCDs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaiser, L.; Hribar, D. Euro-Mediterranean region: Resurged geopolitical importance. Int. J. Euro-Med. Stud. 2012, 5, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Poulos, S.E. The Mediterranean and Black Sea Marine System: An overview of its physico-geographic and oceanographic characteristics. Earth-Sci. Rev. 2020, 200, 103004. [Google Scholar] [CrossRef]
- Depellegrin, D.; Venier, C.; Kyriazi, Z.; Vassilopoulou, V.; Castellani, C.; Ramieri, E.; Bocci, M.; Fernandez, J.; Barbanti, A. Exploring Multi-Use potentials in the Euro-Mediterranean Sea space. Sci. Total Environ. 2019, 653, 612–629. [Google Scholar] [CrossRef] [PubMed]
- EUROSTAT. Maritime Transport Statistics—Short Sea Shipping of Goods—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Maritime_transport_statistics_-_short_sea_shipping_of_goods (accessed on 12 October 2021).
- EUROSTAT. Fishery Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Fishery_statistics (accessed on 12 October 2021).
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from inter-national sea transportation and environmental impact. J. Geosc. Res. 2003, 108, 4560. [Google Scholar] [CrossRef]
- European Environmental Agency. The Impact of International Shipping on European Air Quality and Climate Forcing, EEA Technical Report No 4/2013; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-9213-357-3. ISSN 1725-2237. [Google Scholar] [CrossRef]
- International Maritime Organization. Annex 15-2019. Guidelines for Port State Control under MARPOL Annex VI Chapter 3. In International Convention for the Prevention of Pollution from Ships (MARPOL); International Maritime Organization: London, UK, 2019; Available online: https://www.imo.org/en/OurWork/IIIS/Pages/Port%20State%20Control.aspx (accessed on 12 October 2021).
- International Maritime Organization. MARPOL Annex VI-Prevention of Air Pollution from Ships National Workshop (virtual) on Ratification and Effective Implementation of MARPOL Annex VI for Algeria. In International Convention for the Prevention of Pollution from Ships (MARPOL); International Maritime Organization: London, UK, 2019; Available online: https://www.imo.org/en/OurWork/Environment/Pages/Air-Pollution.aspx (accessed on 12 October 2021).
- Eyring, V.; Köhler, H.W.; Van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. Space Phys. 2005, 110, 171–182. [Google Scholar] [CrossRef]
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; van der Gon, H.A.C.D. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. Discuss. 2014, 14, 10963–10976. [Google Scholar] [CrossRef] [Green Version]
- Jalkanen, J.-P.; Johansson, L.; Kukkonen, J. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmos. Chem. Phys. Discuss. 2016, 16, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Johansson, L.; Jalkanen, J.-P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Merico, E.; Gambaro, A.; Argiriou, A.; Alebic-Juretic, A.; Barbaro, E.; Cesari, D.; Chasapidis, L.; Dimopoulos, S.; Dinoi, A.; Donateo, A.; et al. Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities: Comparison and harmonization of different approaches. Transp. Res. Part D Transp. Environ. 2017, 50, 431–445. [Google Scholar] [CrossRef]
- Russo, M.; Leitao, J.; Gama, C.; Ferreira, J.; Monteiro, A. Shipping emissions over Europe: A state-of-the-art and comparative analysis. Atmos. Environ. 2018, 177, 187–194. [Google Scholar] [CrossRef]
- Saliba, M.; Azzopardi, F.; Muscat, R.; Grima, M.; Smyth, A.; Jalkanen, J.-P.; Johansson, L.; Deidun, A.; Gauci, A.; Galdies, C.; et al. Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak. J. Mar. Sci. Eng. 2021, 9, 762. [Google Scholar] [CrossRef]
- Marmer, E.; Dentener, F.; Van Aardenne, J.; Cavalli, F.; Vignati, E.; Velchev, K.; Hjorth, J.; Boersma, K.; Vinken, G.C.M.; Mihalopoulos, N.; et al. What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea? Atmos. Chem. Phys. Discuss. 2009, 9, 6815–6831. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; van der A, R.J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P.F. Maritime NOx Emissions Over Chinese Seas Derived from Satellite Observations. Geophys. Res. Lett. 2018, 45, 2031–2037. [Google Scholar] [CrossRef] [Green Version]
- Georgoulias, A.K.; Boersma, K.F.; Van Vliet, J.; Zhang, X.; van der A, R.; Zanis, P.; De Laat, J. Detection of NO2 pollution plumes from individual ships with the TROPOMI/S5P satellite sensor. Environ. Res. Lett. 2020, 15, 124037. [Google Scholar] [CrossRef]
- European Marine Observation and Data Network (EMODnet). Available online: https://emodnet.ec.europa.eu/en (accessed on 12 October 2021).
- European Marine Observation and Data Network (EMODnet). Human Activities. Available online: www.emodnet-humanactivities.eu (accessed on 12 October 2021).
- EU Vessel Density Map. Detailed Method. Available online: https://www.emodnet-humanactivities.eu/documents/Vessel%20density%20maps_method_v1.5.pdf (accessed on 12 October 2021).
- CAMS-GLOB-SHIP v2.1. Available online: https://eccad.aeris-data.fr/ (accessed on 12 October 2021).
- Granier, C.; Darras, S.; van der Gon, H.D.; Doubalova, J.; Elguindi, N.; Galle, B.; Gauss, M.; Guevara, M.; Jalkanen, J.P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions (April 2019 Version) [Research Report]; Copernicus Atmosphere Monitoring Service: Reading, UK, 2019. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Koukouli, M.E.; Skoulidou, I.; Karavias, A.; Parcharidis, I.; Balis, D.; Manders, A.; Segers, A.; Eskes, H.; van Geffen, J. Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19. Atmos. Chem. Phys. Discuss. 2021, 21, 1759–1774. [Google Scholar] [CrossRef]
- ESA. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 12 October 2021).
- Boersma, K.F.; Eskes, H.J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J.H.G.M.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 2018, 11, 6651–6678. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.F.; Eskes, H.J.; Dirksen, R.J.; van der A, R.J.; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.; Sneep, M.; Claas, J.; et al. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.-C.; Keppens, A.; Kleipool, Q.; Langerock, B.; Sha, M.K.; Verhoelst, T.; Wagner, T.; Ahn, C.; Argyrouli, A.; Balis, D.; et al. S5P MPC Routine Operations Consolidated Validation Report Series. Version 12.01.00. In Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products—#02 July 2018–February 2019; European Space Agency: Paris, France, 2021; p. 172. [Google Scholar]
- van Geffen, J.; Eskes, H.; Boersma, K.F.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products, S5P-KNMI-L2-0005-RP; Royal Dutch Meteorological Institute: Utrecht, The Netherlands, 2021. [Google Scholar]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; van der Gon, H.A.C.D.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef] [Green Version]
- Schaap, M.; Timmermans, R.M.A.; Roemer, M.; Boersen, G.A.C.; Builtjes, P.J.H.; Sauter, F.J.; Velders, G.J.M.; Beck, J.P. The LOTOS-EUROS model: Description, validation and latest developments. Int. J. Environ. Pollut. 2008, 32, 270–290. [Google Scholar] [CrossRef]
- Schaap, M.; Kranenburg, R.; Curier, L.; Jozwicka, M.; Dammers, E.; Timmermans, R. Assessing the sensitivity of the OMI-NO2 product to emission changes across Europe. Remote. Sens. 2013, 5, 4187–4208. [Google Scholar] [CrossRef] [Green Version]
- Skoulidou, I.; Koukouli, M.-E.; Manders, A.; Segers, A.; Karagkiozidis, D.; Gratsea, M.; Balis, D.; Bais, A.; Gerasopoulos, E.; Stavrakou, T.; et al. Evaluation of the LOTOS-EUROS NO2 simulations using ground-based measurements and S5P/TROPOMI observations over Greece. Atmos. Chem. Phys. 2021, 21, 5269–5288. [Google Scholar] [CrossRef]
- Skoulidou, I.; Koukouli, M.-E.; Segers, A.; Manders, A.; Balis, D.; Stavrakou, T.; van Geffen, J.; Eskes, H. Changes in Power Plant NOx Emissions over Northwest Greece Using a Data Assimilation Technique. Atmosphere 2021, 12, 900. [Google Scholar] [CrossRef]
- Flemming, J.; Inness, A.; Flentje, H.; Huijnen, V.; Moinat, P.; Schultz, M.G.; and Stein, O. Coupling global chemistry transport models to ECMWF’s integrated forecast system. Geosci. Model Dev. 2009, 2, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Van der A, R.J.; Peters, D.H.M.U.; Eskes, H.; Boersma, K.F.; Van Roozendael, M.; De Smedt, I.; Kelder, H.M. Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. 2006, 111, D12317. [Google Scholar] [CrossRef] [Green Version]
- Lamsal, L.N.; Martin, R.V.; van Donkelaar, A.; Celarier, E.A.; Bucsela, E.J.; Boersma, K.F.; Dirksen, R.; Luo, C.; Wang, Y. Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. J. Geophys. Res. 2010, 115, D05302. [Google Scholar] [CrossRef]
- Stavrakou, T.; Müller, J.-F.; Boersma, K.F.; De Smedt, I.; van der A, R.J. Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns. Geophys. Res. Lett. 2008, 35, L10801. [Google Scholar] [CrossRef]
Vessels | Cargo | Tanker | Fishing | Passenger | Other |
---|---|---|---|---|---|
2017 | 38.75% | 21.06% | 15.87% | 12.69% | 11.09% |
2018 | 35.44% | 22.50% | 16.91% | 13.68% | 11.47% |
2019 | 36.01% | 23.23% | 15.45% | 12.78% | 12.53% |
Lane Type | Mediterranean |2019| Maritime Tropospheric NO2 Column (1015 Molecules cm−2) | Greece |2019| Maritime Tropospheric NO2 Column (1015 Molecules cm−2) | ||
---|---|---|---|---|
TROPOMI | LOTOS-EUROS | TROPOMI | LOTOS-EUROS | |
Cargo | 0.67 ± 0.43 | 0.51 ± 0.32 | 0.67 ± 0.44 | 0.52 ± 0.30 |
Tanker | 0.35 ± 0.29 | 0.27 ± 0.23 | 0.31 ± 0.29 | 0.24 ± 0.21 |
Fishing | 0.47 ± 0.56 | 0.37 ± 0.35 | 0.34 ± 0.50 | 0.27 ± 0.39 |
Passenger | 0.20 ± 0.31 | 0.15 ± 0.26 | 0.17 ± 0.34 | 0.13 ± 0.25 |
Other | 0.15 ± 0.31 | 0.12 ± 0.25 | 0.10 ± 0.21 | 0.08 ± 0.15 |
Mediterranean and Black Sea Domain | ||||||||
---|---|---|---|---|---|---|---|---|
Winter | Summer | |||||||
TROPOMI Mean NO2 * | LOTOS-EUROS Mean NO2 * | R | Slope | TROPOMI Mean NO2 * | LOTOS-EUROS Mean NO2 * | R | Slope | |
Cargo | 0.98 ± 0.54 | 0.81 ± 0.45 | 0.88 | 0.73 | 0.71 ± 0.34 | 0.48 ± 0.21 | 0.85 | 0.54 |
Tanker | 0.66 ± 0.48 | 0.54 ± 0.40 | 0.89 | 0.74 | 0.47 ± 0.30 | 0.32 ± 0.21 | 0.92 | 0.64 |
Fishing | 0.90 ± 0.82 | 0.74 ± 0.73 | 0.90 | 0.80 | 0.56 ± 0.42 | 0.37 ± 0.30 | 0.91 | 0.64 |
Passenger | 0.45 ± 0.49 | 0.39 ± 0.45 | 0.95 | 0.87 | 0.35 ± 0.37 | 0.23 ± 0.25 | 0.94 | 0.65 |
Other | 0.43 ± 0.57 | 0.37 ± 0.52 | 0.90 | 0.82 | 0.32 ± 0.37 | 0.22 ± 0.25 | 0.90 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pseftogkas, A.; Koukouli, M.-E.; Skoulidou, I.; Balis, D.; Meleti, C.; Stavrakou, T.; Falco, L.; van Geffen, J.; Eskes, H.; Segers, A.; et al. A New Separation Methodology for the Maritime Sector Emissions over the Mediterranean and Black Sea Regions. Atmosphere 2021, 12, 1478. https://doi.org/10.3390/atmos12111478
Pseftogkas A, Koukouli M-E, Skoulidou I, Balis D, Meleti C, Stavrakou T, Falco L, van Geffen J, Eskes H, Segers A, et al. A New Separation Methodology for the Maritime Sector Emissions over the Mediterranean and Black Sea Regions. Atmosphere. 2021; 12(11):1478. https://doi.org/10.3390/atmos12111478
Chicago/Turabian StylePseftogkas, Andreas, Maria-Elissavet Koukouli, Ioanna Skoulidou, Dimitrios Balis, Charikleia Meleti, Trissevgeni Stavrakou, Luigi Falco, Jos van Geffen, Henk Eskes, Arjo Segers, and et al. 2021. "A New Separation Methodology for the Maritime Sector Emissions over the Mediterranean and Black Sea Regions" Atmosphere 12, no. 11: 1478. https://doi.org/10.3390/atmos12111478
APA StylePseftogkas, A., Koukouli, M. -E., Skoulidou, I., Balis, D., Meleti, C., Stavrakou, T., Falco, L., van Geffen, J., Eskes, H., Segers, A., & Manders, A. (2021). A New Separation Methodology for the Maritime Sector Emissions over the Mediterranean and Black Sea Regions. Atmosphere, 12(11), 1478. https://doi.org/10.3390/atmos12111478