Indoor Air Quality Assessment of Latin America’s First Passivhaus Home
Abstract
:1. Introduction
2. Method
2.1. Indoor Air Quality Criteria
- PM2.5: 25 μg/m3 at 24 h mean and annual mean of 10 μg/m3, as defined by WHO [33].
- tVOC: 300 μg/m3 over 8 h mean, as defined by the WHO [33].
- CO2: 1000 ppm, as defined by IDA3 (moderate IAQ based on the EN 13779:2007 [57])
- Relative humidity: 40–60%RH (ideal) and 30–70%RH (extended) as defined by CIBSE [58].
2.2. Household Characteristics
3. Results
3.1. Passivhaus Ventilation
- c = carbon dioxide concentration in the room (m3/m3)
- q = carbon dioxide supplied to the room (m3/h)
- V = volume of the room (m3)
- e = the constant 2.718
- n = air changes per hour (1/h)
- t = time (hour, h)
- ci = carbon dioxide concentration in the inlet ventilation air (m3/m3)
- c0 = carbon dioxide concentration in the room at start, t = 0 (m3/m3)
3.2. Carbon Dioxide Levels
3.3. Particulate Matter 2.5 μm
3.3.1. Indoor-Outdoor PM2.5 Levels
3.4. Total Volatile Organic Compounds
3.5. Indoor Air Quality Perception
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopfe, C.J.; McLeod, R.S. The PassivHaus Designer’s Manual: A Technical Guide to Low and Zero Energy Buildings, 1st ed.; Routledge: London, UK, 2015. [Google Scholar]
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Peters, T.; Halleran, A. How our homes impact our health: Using a COVID-19 informed approach to examine urban apartment housing. Int. J. Arch. Res. 2020, 15, 10–27. [Google Scholar] [CrossRef]
- Al Khateeb, M.; Peterson, H. The impact of COVID-19 on perceptions of home and house design in Saudi Arabia. Strat. Des. Res. J. 2021, 14, 327–338. [Google Scholar] [CrossRef]
- Passive House Institute. Passipedia. 2017. Available online: http://www.passipedia.org/ (accessed on 3 May 2021).
- Moreno-Rangel, A. Passivhaus. Encyclopedia 2020, 1, 20–29. [Google Scholar] [CrossRef]
- Feist, W.; Bastian, Z.; Ebel, W.; Gollwitzer, E.; Grove-Smith, J.; Kah, O.; Kaufmann, B.; Krick, B.; Pfluger, R.; Schnieders, J.; et al. Passive House Planning Package Version 9: The Energy Balance and Design Tool for Efficent Buildings and Retrofits, 1st ed.; Passive House Institute: Darmstadt, Germany, 2015. [Google Scholar]
- Costanzo, V.; Carrillo Gómez, J.E.; Evola, G.; Marletta, L. Suitability of Passivhaus design for housing projects in Colombia. In Sustainability in Energy and Buildings; Littlewood, J., Howlett, R.J., Capozzoli, A., Jain, L.C., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2020; Volume 163, pp. 97–107. [Google Scholar]
- Valiente, E.E.; Garcia-Alvarado, R.; Celis-D’Amico, F.; Saelzer-Fuica, G. Integrated design experiences for energy-efficient housing in Chile. Constr. Innov. 2019, 19, 236–255. [Google Scholar] [CrossRef]
- Vettorazzi, E.; Figueiredo, A.; Rebelo, F.; Vicente, R.; da Cunha, E.G. Optimization of the passive house concept for residential buildings in the South-Brazilian region. Energy Build. 2021, 240, 110871. [Google Scholar] [CrossRef]
- Gesellschaft für Internationale Zusammenarbeit. NAMA Facility—Implementation of the New Housing NAMA Mexico. 2014. Available online: http://www.nama-facility.org/projects/mexico.html (accessed on 20 May 2009).
- Feist, W. Technical Annex: Evaluation of Social Housing Building Types in Mexico. In Supported NAMA for Sustainable Housing in Mexico: Mitigation Actions and Finance; Mexico’s National Housing Commission: Mexico City, Mexico, 2012. [Google Scholar]
- Bravo-Orlandini, C.; Gómez-Soberón, J.; Valderrama-Ulloa, C.; Sanhueza-Durán, F. Energy, Economic, and Environmental Performance of a Single-Family House in Chile Built to Passivhaus Standard. Sustainability 2021, 13, 1199. [Google Scholar] [CrossRef]
- Carrasco, J.; Kokogiannakis, G. Feasibility of PassivHaus standards and alternative passive design on climatic zones of Chile—Determination of energy requirements with dynamic simulation. Hábitat Susten. 2012, 2, 59–71. [Google Scholar]
- Cruz, A.S.; de Carvalho, R.S.; da Cunha, E.G. Passive House Alternative Proposal for the Brazilian Bioclimatic Zone 8. Int. J. Sustain. Dev. Plan. 2020, 15, 827–833. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Sharpe, T.; McGill, G.; Musau, F. Thermal comfort assessment of the first residential Passivhaus in Latin America. J. Build. Eng. 2021, 43, 103081. [Google Scholar] [CrossRef]
- Schnieders, J.; Eian, T.D.; Filippi, M.; Florez, J.; Kaufmann, B.; Pallantzas, S.; Paulsen, M.; Reyes, E.; Wassouf, M.; Yeh, S.-C. Design and realisation of the Passive House concept in different climate zones. Energy Effic. 2019, 13, 1561–1604. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Indoor Fine Particle (PM2.5) Pollution and Occupant Perception of the Indoor Environment During Summer of the First Passivhaus Certified Dwelling in Latin America. J. Nat. Resour. Dev. 2018, 8, 78–90. [Google Scholar] [CrossRef]
- Ridley, I.A.; Bere, J.; Clarke, A.; Schwartz, Y.; Farr, A. The side by side in use monitored performance of two passive and low carbon Welsh houses. Energy Build. 2014, 82, 13–26. [Google Scholar] [CrossRef]
- Colclough, S.; Kinnane, O.; Hewitt, N.; Griffiths, P. Investigation of nZEB social housing built to the Passive House standard. Energy Build. 2018, 179, 344–359. [Google Scholar] [CrossRef]
- Wang, Y.; Kuckelkorn, J.; Zhao, F.-Y.; Spliethoff, H.; Lang, W. A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renew. Sustain. Energy Rev. 2017, 72, 1303–1319. [Google Scholar] [CrossRef]
- Foster, J.; Sharpe, T.; Poston, A.; Morgan, C.; Musau, F. Scottish Passive House: Insights into Environmental Conditions in Monitored Passive Houses. Sustainability 2016, 8, 412. [Google Scholar] [CrossRef]
- Grudzińska, M. Overheating assessment in flats with glazed balconies in warm-summer humid continental climate. Build. Serv. Eng. Res. Technol. 2021, 42, 583–602. [Google Scholar] [CrossRef]
- Fletcher, M.; Johnston, D.; Glew, D.; Parker, J. An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Build. Environ. 2017, 121, 106–118. [Google Scholar] [CrossRef]
- Finegan, E.; Kelly, G.; O’Sullivan, G. Comparative analysis of Passivhaus simulated and measured overheating frequency in a typical dwelling in Ireland. Build. Res. Inf. 2019, 48, 681–699. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Sharpe, T.; McGill, G.; Musau, F. Indoor Air Quality in Passivhaus Dwellings: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 4749. [Google Scholar] [CrossRef]
- Derbez, M.; Berthineau, B.; Cochet, V.; Lethrosne, M.; Pignon, C.; Riberon, J.; Kirchner, S. Indoor air quality and comfort in seven newly built, energy-efficient houses in France. Build. Environ. 2014, 72, 173–187. [Google Scholar] [CrossRef]
- Feist, W.; Pfluger, R.; Hasper, W. Durability of building fabric components and ventilation systems in passive houses. Energy Effic. 2019, 13, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xue, Q.; Ji, Y.; Yu, Z. Indoor environment quality in a low-energy residential building in winter in Harbin. Build. Environ. 2018, 135, 194–201. [Google Scholar] [CrossRef]
- Jacobs, D.E.; Kelly, T.; Sobolewski, J. Linking Public Health, Housing, and Indoor Environmental Policy: Successes and Challenges at Local and Federal Agencies in the United States. Environ. Heal. Perspect. 2007, 115, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Rosseau, D.; Bowser, D.; Mattock, C. A Guide to Mechanical Equipment for Healthy Indoor Environments. 2001. Available online: https://www.cmhc-schl.gc.ca/odpub/pdf/62015.pdf (accessed on 7 November 2018).
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2007. [Google Scholar]
- World Health Organization. Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Publications: Copenhagen, Denmark, 2000. [Google Scholar]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants, 1st ed.; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2010; Volume 9. [Google Scholar]
- Dan, D.; Tanasa, C.; Stoian, V.; Brata, S.; Stoian, D.; Gyorgy, T.N.; Florut, S. Passive house design—An efficient solution for residential buildings in Romania. Energy Sustain. Dev. 2016, 32, 99–109. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Christoforou, E.; Ilic, M.; Papadopoulos, A. Performance of a Passive House under subtropical climatic conditions. Energy Build. 2016, 133, 14–31. [Google Scholar] [CrossRef]
- Santin, O.G.; Grave, A.; Jiang, S.; Tweed, C.; Mohammadi, M. Monitoring the performance of a Passivhaus care home: Lessons for user-centric design. J. Build. Eng. 2021, 43, 102565. [Google Scholar] [CrossRef]
- Kaunelienė, V.; Prasauskas, T.; Krugly, E.; Stasiulaitienė, I.; Čiužas, D.; Šeduikytė, L.; Martuzevicius, D. Indoor air quality in low energy residential buildings in Lithuania. Build. Environ. 2016, 108, 63–72. [Google Scholar] [CrossRef]
- Less, B.; Mullen, N.; Singer, B.; Walker, I. Indoor air quality in 24 California residences designed as high-performance homes. Sci. Technol. Built Environ. 2015, 21, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Guillén-Lambea, S.; Soria, B.R.; Marín, J.M. Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renew. Sustain. Energy Rev. 2016, 62, 561–574. [Google Scholar] [CrossRef]
- Langer, S.; Bekö, G.; Bloom, E.; Widheden, A.; Ekberg, L. Indoor air quality in passive and conventional new houses in Sweden. Build. Environ. 2015, 93, 92–100. [Google Scholar] [CrossRef]
- Wallner, P.; Tappler, P.; Munoz, U.; Damberger, B.; Wanka, A.; Kundi, M.; Hutter, H.-P. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study. Int. J. Environ. Res. Public Health 2017, 14, 314. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W. Impact of constructional energy-saving measures on radon levels indoors. Indoor Air 2019, 29, 680–685. [Google Scholar] [CrossRef]
- Lim, A.-Y.; Yoon, M.; Kim, E.-H.; Kim, H.-A.; Lee, M.J.; Cheong, H.-K. Effects of mechanical ventilation on indoor air quality and occupant health status in energy-efficient homes: A longitudinal field study. Sci. Total. Environ. 2021, 785, 147324. [Google Scholar] [CrossRef]
- Langer, S.; Ramalho, O.; Derbez, M.; Ribéron, J.; Kirchner, S.; Mandin, C. Indoor environmental quality in French dwellings and building characteristics. Atmos. Environ. 2016, 128, 82–91. [Google Scholar] [CrossRef]
- McGill, G.; Oyedele, L.O.; Keeffe, G. Indoor air-quality investigation in code for sustainable homes and passivhaus dwellings. World J. Sci. Technol. Sustain. Dev. 2015, 12, 39–60. [Google Scholar] [CrossRef]
- Wilson, J.; Dixon, S.L.; Jacobs, D.E.; Breysse, J.; Akoto, J.; Tohn, E.; Isaacson, M.; Evens, A.; Hernandez, Y. Watts-to-Wellbeing: Does residential energy conservation improve health? Energy Effic. 2013, 7, 151–160. [Google Scholar] [CrossRef]
- Milner, J.; Shrubsole, C.; Das, P.; Jones, B.; Ridley, I.A.; Chalabi, Z.; Hamilton, I.; Armstrong, B.; Davies, M.; Wilkinson, P. Home energy efficiency and radon related risk of lung cancer: Modelling study. BMJ 2013, 348, f7493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGill, G.; Sharpe, T.; Oyedele, L.; Keeffe, G.; McAllister, K. An investigation of indoor air quality in UK Passivhaus dwellings. In Smart Energy Control Systems for Sustainable Buildings; Smart Innovation, Systems and Technologies; 2017; Volume 67, pp. 245–268. [Google Scholar] [CrossRef]
- Sherman, M.H.; Chan, R. Building Airtightness: Research and Practice; Lawrence Berkeley National Laboratory Report No. LBNL-53356; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2004. [Google Scholar]
- Seppänen, O.; Fisk, W.J. Association of ventilation system type with SBS symptoms in office workers. Indoor Air 2002, 12, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. J. Sensors Sens. Syst. 2018, 7, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.; Kristensen, J.; Elarga, H.; Andersen, R.; Midtstraum, A. Accuracy and Air Temperature Dependency of Commercial Low-Cost NDIR CO2 Sensors: An Experimental Investigation. In Proceedings of the 4th International Conference on Building Energy & Environment, Melbourne, VIC, Australia, 5–9 February 2018; pp. 203–207. [Google Scholar]
- Moreno-Rangel, A. Continuous IAQ Monitoring with Low-Cost Monitors: Protocol Development, Performance and Application in Residential Building. Ph.D. Thesis, The Glasgow School of Art, Glasgow, Scotland, April 2019. [Google Scholar]
- Raw, G.J. A Questionnaire for Studies of Sick Building Syndrome; A Report to the Royal Society of Health; BRE Press: Watford, ND, USA, 1995. [Google Scholar]
- European Committee for Standardization. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; EN 15251:2007; European Committee for Standardization: Brussels, Belgium, 2008. [Google Scholar]
- Chartered Institution of Building Services Engineers. CIBSE Guide A: Environmental Design, 7th ed.; CIBSE Publications: Norwich, UK, 2006. [Google Scholar]
- Mendez Florian, F.; Velasco Sodi, P. Estrategia Nacional para la Vivienda Sustentable; Componente Ambiental de la Sustentabilidad; Fundacion IDEA: Mexico City, Mexico, 2013. [Google Scholar]
- Wargocki, P. The Effects of Ventilation in Homes on Health. Int. J. Vent. 2013, 12, 101–118. [Google Scholar] [CrossRef]
- Engineering ToolBox. Carbon Dioxide Concentrations in Rooms with People. 2004. Available online: https://www.engineeringtoolbox.com/pollution-concentration-rooms-d_692.html (accessed on 23 May 2018).
- European Committee for Standardization. Ventilation for Non-Residential Buildings—Performance Requirements for Ventilation and Room-Conditioning Systems; EN 13779:2007; European Committee for Standardization: Brussels, Belgium, 2007. [Google Scholar]
- Barraza-Villarreal, A.; Sunyer, J.; Cadena, L.H.; Escamilla-Nuñez, M.C.; Sienra-Monge, J.J.; Ramírez-Aguilar, M.; Cortez-Lugo, M.; Holguin, F.; Diaz-Sanchez, D.; Olin, A.C.; et al. Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren. Environ. Health Perspect. 2008, 116, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Holguín, F.; Téllez-Rojo, M.M.; Hernández, M.; Cortez, M.; Chow, J.C.; Watson, J.G.; Mannino, D.; Romieu, I. Air Pollution and Heart Rate Variability Among the Elderly in Mexico City. Epidemiology 2003, 14, 521–527. [Google Scholar] [CrossRef]
- Cortez-Lugo, M.; Moreno-Macias, H.; Holguin-Molina, F.; Chow, J.C.; Watson, J.G.; Gutiérrez-Avedoy, V.; Mandujano, F.; Hernández-Ávila, M.; Romieu, I. Relationship between indoor, outdoor, and personal fine particle concentrations for individuals with COPD and predictors of indoor-outdoor ratio in Mexico City. J. Expo. Sci. Environ. Epidemiol. 2007, 18, 109–115. [Google Scholar] [CrossRef]
- Sosa, E.R.; Bravo, A.H.; Mugica-Alvarez, V.; Sanchez, A.P.; Bueno, L.E.; Krupa, S. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City. Environ. Pollut. 2009, 157, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Holøs, S.B.; Yang, A.; Lind, M.; Thunshelle, K.; Schild, P.; Mysen, M. VOC emission rates in newly built and renovated buildings, and the influence of ventilation—A review and meta-analysis. Int. J. Vent. 2018, 18, 153–166. [Google Scholar] [CrossRef]
- Bell, M.L.; Davis, D.L.; Gouveia, N.; Borja-Aburto, V.H.; Cifuentes, L.A. The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environ. Res. 2006, 100, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Militello-Hourigan, R.E.; Miller, S.L. The impacts of cooking and an assessment of indoor air quality in Colorado passive and tightly constructed homes. Build. Environ. 2018, 144, 573–582. [Google Scholar] [CrossRef] [Green Version]
Household Characteristic | Passivhaus Dwelling | Standard Dwelling |
---|---|---|
Household occupancy | 2 Adults, 1 child (>16). | 2 Adults, 1 child (>16). |
Age range (years) | 40–50, <16 | 40–50, 50–60, <16 |
Smoking | No, only outdoors | No, only outdoors |
Occupancy Pattern (Daily) | ||
Bedroom | 00:00–06:30; 22:30–24:00 | 00:00–06:30; 22:30–24:00 |
Kitchen | 07:30–09:00; 14:00–16:00; 20:30–21:30 | 07:30–09:00; 11:00–16:00; 20:30– 21:30 |
Living room | 09:00–09:30; 14:00–16:00; 21:30–22:30 | 09:00–09:30; 11:00–16:00; 21:30–22:30 |
Frequency of Window Opening | ||
Morning | Rarely | Constantly |
Afternoon | Occasionally | Regularly |
Evening | Regularly | Occasionally |
Night | Constantly | Rarely |
Building Characteristic | Passivhaus Dwelling | Standard Dwelling |
---|---|---|
Airtightness (n50) | 0.59 h−1 | Not tested |
Floor area | 42 m2 | 57 m2 |
Main door | PVC (Passivhaus certified) | Wood (standard) |
Ug-value (window) | 1.64 W/(m2K) | 5.78 W/(m2K) |
U-value (floor slab) | 0.33 W/(m2K) | 13.66 W/(m2K) |
U-value (roof) | 0.36 W/(m2K) | 13.66 W/(m2K) |
U-value (wall) | 0.37 W/(m2K) | 1.18 W/(m2K) |
Ventilation | Mechanical extraction and cross natural ventilation. Due to the mild climate, no MVHR was needed. An extraction fan ran intermittently to provide 42 m3/h as calculated by the PHPP calculations; no kitchen hood. | Natural (cross and stack). Calculated ventilation (89.6 m3/h) depending on the outdoor conditions Kitchen hood fans with no extract. |
Window type | Double-glazing 6 mm/ 12 mm air, 4 mm low-e-clear-claro (Passivhaus certified) | Single glazing 3 mm (Standard) |
Building Standard | Passivhaus (certified) | Mexico City’s Standard Building Regulation |
Annual Mean (μg/m3) | Standard Deviation | % of Time above 10 μg/m3 | % of Time above 25 μg/m3 | Number of Days above 25 μg/m3 | ||
---|---|---|---|---|---|---|
Passivhaus | Bedroom | 15.8 | 10.9 | 73.8% | 10.7% | 40 |
Living room | 16.9 | 10.5 | 82.7% | 12.1% | 44 | |
Kitchen | 17.2 | 12.0 | 76.3% | 13.7% | 50 | |
Standard home | Bedroom | 29.4 | 18.8 | 100.0% | 66.0% | 241 |
Living room | 27.8 | 17.1 | 99.4% | 52.6% | 173 | |
Kitchen | 26.1 | 16.9 | 96.9% | 47.4% | 192 | |
Outdoors | 22.4 | 13.3 | 81.1% | 35.3% | 129 |
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual | |
Standard home | Bedroom | 2.42 | 5.4 | 3.2 | 0.4 | 9.7 | 4.6 | 5.8 | 12.9 | 9.7 | 11.9 | 11.2 | 7.1 | 7.0 |
Kitchen | −0.92 | 1.2 | −0.7 | 0.7 | 2.3 | 2.0 | 0.3 | 4.0 | 10.9 | 11.3 | 9.6 | 3.2 | 3.7 | |
Living room | 1.81 | 1.6 | 5.6 | −2.6 | 0.3 | 2.7 | 4.2 | 9.7 | 12.6 | 13.7 | 13.0 | 2.4 | 5.4 | |
Passivhaus | Bedroom | −13.67 | −9.6 | −6.1 | −8.8 | −9.5 | −7.5 | −7.1 | −4.0 | −4.4 | 1.5 | −1.9 | −7.7 | −6.5 |
Kitchen | −13.49 | −6.8 | −4.9 | −7.3 | −6.2 | −6.5 | −5.9 | −3.0 | −4.4 | −0.0 | 0.8 | −4.9 | −5.2 | |
Living room | −14.00 | −7.0 | −2.8 | −8.8 | −10.0 | −5.5 | −5.9 | −4.0 | −5.4 | 2.1 | −0.1 | −4.5 | −5.5 |
IAQ Perception | Home Type | Resident | Score | Mean | SD | Mean + SD | Mean - SD | Min | Max |
---|---|---|---|---|---|---|---|---|---|
Fresh (1)–stuffy (7) scale | Passivhaus | R1 | 4 | 4.7 | 0.6 | 5.2 | 4.1 | 4 | 5 |
R2 | 5 | ||||||||
R3 | 5 | ||||||||
Standard | R1 | 3 | 3.0 | 0.0 | 3.0 | 3.0 | 3 | 3 | |
R2 | 3 | ||||||||
R3 | 3 | ||||||||
Dry (1)–humid (7) scale | Passivhaus | R1 | 4 | 4.0 | 1.0 | 5.0 | 3.0 | 3 | 5 |
R2 | 5 | ||||||||
R3 | 3 | ||||||||
Standard | R1 | 4 | 4.7 | 0.6 | 5.2 | 4.1 | 4 | 5 | |
R2 | 5 | ||||||||
R3 | 5 | ||||||||
Still (1)–draughty (7) scale | Passivhaus | R1 | 3 | 3.3 | 0.6 | 3.9 | 2.8 | 3 | 4 |
R2 | 4 | ||||||||
R3 | 3 | ||||||||
Standard | R1 | 5 | 4.7 | 0.6 | 6.2 | 5.1 | 5 | 6 | |
R2 | 6 | ||||||||
R3 | 6 | ||||||||
Odourless (1)–smelly (7) scale | Passivhaus | R1 | 1 | 2.3 | 1.5 | 3.9 | 0.8 | 1 | 4 |
R2 | 4 | ||||||||
R3 | 2 | ||||||||
Standard | R1 | 5 | 5.3 | 0.6 | 5.9 | 4.8 | 5 | 6 | |
R2 | 5 | ||||||||
R3 | 6 | ||||||||
Satisfactory overall (1)–unsatisfactory overall (7) scale | Passivhaus | R1 | 1 | 1.3 | 0.6 | 1.9 | 0.8 | 1 | 2 |
R2 | 1 | ||||||||
R3 | 2 | ||||||||
Standard | R1 | 3 | 7.0 | 1.0 | 5.0 | 3.0 | 3 | 5 | |
R2 | 5 | ||||||||
R3 | 4 |
IAQ Perception | Home Type | Resident | Score | Mean | SD | Mean + SD | Mean − SD | Min | Max |
---|---|---|---|---|---|---|---|---|---|
Fresh (1)–stuffy (7) scale | Passivhaus | R1 | 4 | 3.3 | 1.2 | 4.5 | 2.2 | 2 | 4 |
R2 | 4 | ||||||||
R3 | 2 | ||||||||
Standard | R1 | 5 | 4.7 | 0.6 | 5.2 | 4.1 | 4 | 5 | |
R2 | 5 | ||||||||
R3 | 4 | ||||||||
Dry (1)–humid (7) scale | Passivhaus | R1 | 3 | 4.0 | 1.0 | 5.0 | 3.0 | 3 | 5 |
R2 | 4 | ||||||||
R3 | 5 | ||||||||
Standard | R1 | 3 | 3.3 | 0.6 | 3.9 | 2.8 | 3 | 4 | |
R2 | 4 | ||||||||
R3 | 3 | ||||||||
Still (1)–draughty (7) scale | Passivhaus | R1 | 4 | 3.7 | 0.6 | 4.2 | 3.1 | 3 | 4 |
R2 | 4 | ||||||||
R3 | 3 | ||||||||
Standard | R1 | 2 | 2.3 | 0.6 | 2.9 | 1.8 | 2 | 3 | |
R2 | 3 | ||||||||
R3 | 2 | ||||||||
Odourless (1)–smelly (7) scale | Passivhaus | R1 | 1 | 2.7 | 1.5 | 4.2 | 1.1 | 1 | 4 |
R2 | 4 | ||||||||
R3 | 3 | ||||||||
Standard | R1 | 5 | 5.0 | 0.0 | 5.0 | 5.0 | 5 | 5 | |
R2 | 5 | ||||||||
R3 | 5 | ||||||||
Satisfactory overall (1)–unsatisfactory overall (7) scale | Passivhaus | R1 | 1 | 1.3 | 0.6 | 1.9 | 0.8 | 1 | 2 |
R2 | 1 | ||||||||
R3 | 2 | ||||||||
Standard | R1 | 5 | 5.3 | 0.6 | 5.9 | 4.8 | 5 | 6 | |
R2 | 6 | ||||||||
R3 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Rangel, A.; Musau, F.; Sharpe, T.; McGill, G. Indoor Air Quality Assessment of Latin America’s First Passivhaus Home. Atmosphere 2021, 12, 1477. https://doi.org/10.3390/atmos12111477
Moreno-Rangel A, Musau F, Sharpe T, McGill G. Indoor Air Quality Assessment of Latin America’s First Passivhaus Home. Atmosphere. 2021; 12(11):1477. https://doi.org/10.3390/atmos12111477
Chicago/Turabian StyleMoreno-Rangel, Alejandro, Filbert Musau, Tim Sharpe, and Gráinne McGill. 2021. "Indoor Air Quality Assessment of Latin America’s First Passivhaus Home" Atmosphere 12, no. 11: 1477. https://doi.org/10.3390/atmos12111477
APA StyleMoreno-Rangel, A., Musau, F., Sharpe, T., & McGill, G. (2021). Indoor Air Quality Assessment of Latin America’s First Passivhaus Home. Atmosphere, 12(11), 1477. https://doi.org/10.3390/atmos12111477