Investigation of Atmospheric Conditions Associated with a Storm Surge in the South-West of Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Data
2.2.2. WRF Model
3. Results and Discussion
3.1. Analysis of Synoptic Maps
3.2. Analysis of the WRF Model Results
4. Conclusions
- (1)
- At the time of the severe and destructive thunderstorm on the east coast of the Persian Gulf, atmospheric conditions of instability in the synoptic-scale (i.e., geopotential height of 850 to 300 hPa) and the micro scale (the strong vertical wind shear) were present.
- (2)
- Increase in the vertical wind shear and the flow of jet stream at a pressure of 850 to 300 hPa had caused activation of the low-pressure center and its northern displacement on the east coast of the Persian Gulf.
- (3)
- The existence of a temperature inversion and extreme air stability in the first 500 m from the ground surface caused the accumulation of moisture and increased the dew point temperature, which, as a consequence, reduced the difference between air temperature and dew point temperature.
- (4)
- Suitable moisture conditions (especially in the lower level of the troposphere) had led to the development of a supercell storm, CB clouds, and ultimately to the downburst and the intensification of air descent in the studied area.
- (5)
- Higher amplification of the mid-level pattern, with more powerful upper- and mid-level flow was discovered in a jet, which amplified vertical movement forcing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponte, R.M.; Salstein, D.A.; Rosen, R.D. Sea level response to pressure forcing in a barotropic numerical model. J. Phys. Oceanogr. 1991, 21, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Hopley, D. Coastal changes produced by tropical cyclone Althea in Queensland; December 1971. Aust. Geogr. 1974, 12, 445–456. [Google Scholar] [CrossRef]
- Watson, P.L.; Koukoula, M.; Anagnostou, E. Influence of the characteristics of weather information in a thunderstorm-related power outage prediction system. Forecasting 2021, 3, 541–560. [Google Scholar] [CrossRef]
- Flather, R.A. Storm surges. In Encyclopedia of Ocean Sciences; Steele, J., Thorpe, S., Turekian, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 2882–2892. [Google Scholar]
- Schwab, D.J. Simulation and forecasting of Lake Erie storm surges. Mon. Weather Rev. 1978, 106, 1476–1487. [Google Scholar] [CrossRef] [Green Version]
- Mason, D. Investigation of Convective Downburst Hazards to Marine Transportation. arXiv 2007, arXiv:physics/0701230. [Google Scholar]
- Sengupta, A.; Sarkar, P.P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 345–365. [Google Scholar] [CrossRef]
- Moyo, E.N.; Nangombe, S.S. Southern Africa’s 2012–13 violent storms: Role of climate change. Procedia IUTAM 2015, 17, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Wakimoto, R.M. Forecasting dry microburst activity over the high plains. Mon. Weather Rev. 1985, 113, 1131–1143. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.D.; Wilson, J.W. A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteorol. Climatol. 1989, 28, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-J.; Hughes, R.G.; Pasken, R.W. Subcloud-layer kinematic and dynamic structures of a microburst-producing thunderstorm in Colorado determined from JAWS dual-doppler measurements. Bound.-Layer Meteorol. 1987, 39, 67–86. [Google Scholar] [CrossRef]
- Jariwala, S.A. Experimental simulation of a density-driven downburst translating within a turbulent boundary layer. Electron. Thesis Diss. Repos. 2021, 7656, 1–108. [Google Scholar]
- Proctor, F.H. Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci. 1989, 46, 2143–2165. [Google Scholar] [CrossRef] [Green Version]
- Atkins, N.T.; Wakimoto, R.M. Wet microburst activity over the southeastern United States: Implications for forecasting. Weather Forecast. 1991, 6, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Sabziparvar, A.A.; Mir Mousavi, S.H.; Karampour, M.; Doostkamian, M.; Haghighi, E.; Rousta, I.; Olafsson, H.; Sarif, M.O.; Gupta, R.D.; Moniruzzaman, M.; et al. Harmonic analysis of the spatiotemporal pattern of thunderstorms in Iran (1961–2010). Adv. Meteorol. 2019, 2019, 1612503. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R. A simple model of evaporatively driven dowadraft: Application to microburst downdraft. J. Atmos. Sci. 1985, 42, 1004–1023. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, W.P., III; Rodi, A.R. Aircraft measurements on microburst development from hydrometeor evaporation. J. Atmos. Sci. 1987, 44, 3037–3051. [Google Scholar] [CrossRef] [Green Version]
- Wakimoto, R.; Kingsmill, D.; Kessinger, C. Visual and dual-Doppler analysis of low-reflectivity microbursts. In Proceedings of the 24th Conference on Radar Meteorology, Tallahassee, FL, USA, 27–31 March 1989; pp. 77–80. [Google Scholar]
- Pryor, K.L.; Ellrod, G.P. WMSI—A new index for forecasting wet microburst severity. J. Operat. Meteorol. 2004, 25, 25. [Google Scholar]
- Colle, B.A.; Buonaiuto, F.; Bowman, M.J.; Wilson, R.E.; Flood, R.; Hunter, R.; Mintz, A.; Hill, D. New York City’s vulnerability to coastal flooding: Storm surge modeling of past cyclones. Bull. Am. Meteorol. Soc. 2008, 89, 829–842. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.; Smith, J.A.; Villarini, G.; Marchok, T.P.; Baeck, M.L. Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003). Weather Forecast. 2010, 25, 1342–1361. [Google Scholar] [CrossRef]
- El-Sabh, M.; Murty, T. Storm surges in the Arabian Gulf. Nat. Hazards 1989, 1, 371–385. [Google Scholar] [CrossRef]
- Thoppil, P.G.; Hogan, P.J. Persian Gulf response to a wintertime shamal wind event. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Mojarrad, F.; Koshki, S.; Masoompour, J.; Miri, M. Analysis of thunderstorm instability indexes in Iran using reanalysis data. J. Spat. Anal. Environ. Hazards 2018, 4, 33–48. [Google Scholar]
- Masoompour Samakosh, J. Statistical-synoptic analysis of thunderstorm in the Southern Coast of Iran. J. Earth Space Phys. 2016, 42, 697–708. [Google Scholar]
- Etemadi, H.; Smoak, J.M.; Abbasi, E. Spatiotemporal pattern of degradation in arid mangrove forests of the Northern Persian Gulf. Oceanologia 2021, 63, 99–114. [Google Scholar] [CrossRef]
- Kim, J.; Hangan, H. Numerical simulations of impinging jets with application to downbursts. J. Wind. Eng. Ind. Aerodyn. 2007, 95, 279–298. [Google Scholar] [CrossRef]
- Mason, M.S.; Fletcher, D.; Wood, G. Numerical simulation of idealised three-dimensional downburst wind fields. Eng. Struct. 2010, 32, 3558–3570. [Google Scholar] [CrossRef]
- Kramer, M.; Heinzeller, D.; Hartmann, H.; van den Berg, W.; Steeneveld, G.-J. Assessment of MPAS variable resolution simulations in the grey-zone of convection against WRF model results and observations. Clim. Dyn. 2020, 55, 253–276. [Google Scholar] [CrossRef] [Green Version]
- Stull, R.B.; Ahrens, C.D. Meteorology for Scientists and Engineers; Brooks/Cole: Pacific Grove, CA, USA, 2000. [Google Scholar]
- Barlow, M.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W.; Lim, Y.-K.; Schumacher, R.S.; Wehner, M.F.; Agel, L.; Bosilovich, M.; Collow, A.; et al. North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2019, 53, 6835–6875. [Google Scholar] [CrossRef] [Green Version]
- Rotunno, R.; Klemp, J. On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci. 1985, 42, 271–292. [Google Scholar] [CrossRef]
- McCaul, E.W., Jr.; Weisman, M.L. Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Weather Rev. 1996, 124, 408–429. [Google Scholar] [CrossRef] [Green Version]
- Gidel, L.T. Simulation of the differences and similarities of warm and cold surface frontogenesis. J. Geophys. Res. Oceans 1978, 83, 915–928. [Google Scholar] [CrossRef]
- Rousta, I.; Doostkamian, M.; Taherian, A.M.; Haghighi, E.; Ghafarian Malamiri, H.R.; Ólafsson, H. Investigation of the spatio-temporal variations in atmosphere thickness pattern of Iran and the Middle East with special focus on precipitation in Iran. Climate 2017, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Javadizadeh, F.; Dargahian, F.; Ólafsson, H.; Shiri-Karimvandi, A.; Vahedinejad, S.H.; Doostkamian, M.; Monro Vargas, E.R.; Asadolahi, A. Investigation of vorticity during prevalent winter precipitation in Iran. Adv. Meteorol. 2018, 2018, 6941501. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.R. The electrification of severe storms. In Severe Convective Storms; Springer: Berlin/Heidelberg, Germany, 2001; pp. 527–561. [Google Scholar]
- Vonnegut, B.; Weyer, J.R. Luminous phenomena in nocturnal tornadoes. Science 1966, 153, 1213–1220. [Google Scholar] [CrossRef]
- Mazur, V. A physical model of lightning initiation on aircraft in thunderstorms. J. Geophys. Res. Atmos. 1989, 94, 3326–3340. [Google Scholar] [CrossRef]
- Sawyer, J.S. The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Math. Phys. Eng. Sci. 1956, 234, 346–362. [Google Scholar]
- Fujita, T.T. Downbursts: Meteorological features and wind field characteristics. J. Wind. Eng. Ind. Aerodyn. 1990, 36, 75–86. [Google Scholar] [CrossRef]
- Proctor, F.; Bowles, R. Three-dimensional simulation of the Denver 11 July 1988 microburst-producing storm. Meteorol. Atmospheric Phys. 1992, 49, 107–124. [Google Scholar] [CrossRef]
- Wakimoto, R.M. Convectively driven high wind events. In Severe Convective Storms; Springer: Berlin/Heidelberg, Germany, 2001; pp. 255–298. [Google Scholar]
- Wilson, J.W.; Roberts, R.D.; Kessinger, C.; McCarthy, J. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Appl. Meteorol. Climatol. 1984, 23, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, Y.G.; Abbasi, E.; Farajzadeh, M. Analysis of the effect of Tropical Cyclone Phet on the occurrence of heavy rainfall and floods in Chabahar, Iran. Weather 2015, 70, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Liu, C.; Ikeda, K.; Bullock, R.; Rasmussen, R.M.; Holland, G.J.; Clark, M. Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim. Dyn. 2020, 55, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Poujol, B.; Prien, A.F.; Molina, M.J.; Muller, C. Dynamic and thermodynamic impacts of climate change on organized convection in Alaska. Clim. Dyn. 2021, 56, 2569–2593. [Google Scholar] [CrossRef]
- Abbasi, E.; Etemadi, H. Numerical modeling of atmospheric phenomena causes a water logging in coastal areas of the Persian Gulf. J. Environ. Sci. Technol. 2021, 23, 103–114. [Google Scholar]
- Abbasi, E.; Etemadi, H.; Smoak, J.M.; Amouniya, H.; Mahoutchi, M.H. Dust storm source detection using ANP and WRF models in southwest of Iran. Arab. J. Geosci. 2021, 14, 1529. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, E.; Etemadi, H.; Smoak, J.M.; Rousta, I.; Olafsson, H.; Baranowski, P.; Krzyszczak, J. Investigation of Atmospheric Conditions Associated with a Storm Surge in the South-West of Iran. Atmosphere 2021, 12, 1429. https://doi.org/10.3390/atmos12111429
Abbasi E, Etemadi H, Smoak JM, Rousta I, Olafsson H, Baranowski P, Krzyszczak J. Investigation of Atmospheric Conditions Associated with a Storm Surge in the South-West of Iran. Atmosphere. 2021; 12(11):1429. https://doi.org/10.3390/atmos12111429
Chicago/Turabian StyleAbbasi, Esmaeil, Hana Etemadi, Joseph M. Smoak, Iman Rousta, Haraldur Olafsson, Piotr Baranowski, and Jaromir Krzyszczak. 2021. "Investigation of Atmospheric Conditions Associated with a Storm Surge in the South-West of Iran" Atmosphere 12, no. 11: 1429. https://doi.org/10.3390/atmos12111429
APA StyleAbbasi, E., Etemadi, H., Smoak, J. M., Rousta, I., Olafsson, H., Baranowski, P., & Krzyszczak, J. (2021). Investigation of Atmospheric Conditions Associated with a Storm Surge in the South-West of Iran. Atmosphere, 12(11), 1429. https://doi.org/10.3390/atmos12111429