Stress-Induced Apparent Resistivity Variations at the Kalpin Observatory and the Correlation with the 2020 Mw 6.0 Jiashi Earthquake
Abstract
:1. Introduction
2. Geologic Setting and Environment of Observatory
2.1. Tectonic Setting
2.2. Kalpin Apparent Resistivity Observatory
3. Variations Recorded at the Kalpin Observatory
4. Local Stress Environment
5. Discussion
5.1. Relationship between Apparent Resistivity and Stress
5.2. Spatiotemporal Evolution of LURR in the Seismogenic Region
5.3. Seepage Gas Monitoring
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamazaki, Y. Electrical conductivity of strained rocks. The first paper. Laboratory experiments on sedimentary rocks. Bull. Earthq. Res. Inst. 1965, 43, 783–802. [Google Scholar]
- Yamazaki, Y. Electrical conductivity of strained rocks. The second paper. Further experiments on sedimentary rocks. Bull. Earthq. Res. Inst. 1966, 44, 1553–1570. [Google Scholar]
- Yamazaki, Y. Coseismic resistivity steps. Tectonophysics 1974, 22, 159–171. [Google Scholar] [CrossRef]
- Yamazaki, Y. Precursory and coseismic resistivity changes. Pure Appl. Geophys. 1975, 113, 219–227. [Google Scholar] [CrossRef]
- Brace, W.F.; Orange, A.S. Electrical resistivity changes in saturated rocks during fracture and frictional sliding. J. Geophys. Res. 1968, 74, 1433–1445. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W.; Scholz, C. Dilatency in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Brace, W.F. Dilatancy-related electrical resistivity changes in rocks. Pure Appl. Geophys. 1975, 113, 207–217. [Google Scholar] [CrossRef]
- Morrow, C.; Brace, W.F. Electrical resistivity changes in tuffs due to stress. J. Geophys. Res. Solid Earth 1981, 86, 2929–2934. [Google Scholar] [CrossRef]
- Walsh, J.B.; Brace, W.F. The effect of pressure on porosity and the transport properties of rock. J. Geophys. Res. 1984, 89, 9425–9431. [Google Scholar] [CrossRef]
- Thanassoulas, C. Short-Term Earthquake Prediction; H. Dounias & Co.: Athens, Greece, 2007. [Google Scholar]
- Madden, T.R.; La Torraca, G.A.; Park, S.K. Electrical conductivity variations around the Palmdale section of the San Andreas Fault Zone. J. Geophys. Res. 1993, 98, 795–808. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, F. Geoelectric precursors to strong earthquakes in China. Tectonophysics 1994, 233, 99–113. [Google Scholar]
- Chu, J.J.; Gui, X.; Dai, J.; Marone, C.; Spiegelman, M.W.; Seeber, L.; Armbruster, J.G. Geoelectric signals in China and the earthquake generation process. J. Geophys. Res. 1996, 101, 13869–13882. [Google Scholar] [CrossRef]
- Lu, J.; Xie, T.; Li, M.; Wang, Y.L.; Ren, Y.X.; Gao, S.D.; Wang, L.W.; Zhao, J.L. Monitoring shallow resistivity changes prior to the 12 May 2008 M 8.0 Wenchuan earthquake on the Longmen Shan tectonic zone, China. Tectonophysics 2016, 675, 244–257. [Google Scholar] [CrossRef]
- Barsukov, O.M. Variations of electric resistivity of mountain rocks connected with tectonic causes. Tectonophysics 1972, 14, 273–277. [Google Scholar] [CrossRef]
- Honkura, Y.; Oshiman, N.; Matsushima, M.; Baris, S.; Tunçer, M.K.; Tank, S.B.; Çelik, C.; Çiftçi, E.T. Rapid changes in the electrical state of the 1999 Izmit earthquake rupture zone. Nat. Commun. 2013, 4, 2116. [Google Scholar] [CrossRef] [Green Version]
- Hautot, S. Modeling temporal variations of electrical resistivity associated with pore pressure change in a kilometer-scale natural system, Geochem. Geophys. Geosyst. 2005, 6, Q06005. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R.H. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 1992, 211, 283–293. [Google Scholar] [CrossRef]
- Uyeshima, M. EM monitoring of crustal processes including the use of the Network-MT observations. Surv. Geophys. 2007, 28, 199–237. [Google Scholar] [CrossRef]
- Wannamaker, P.E.; Caldwell, T.G.; Jiracek, G.R.; Maris, V.; Hill, G.J.; Ogawa, Y.; Bibby, H.M.; Bennie, S.B.; Heise, W. The fluid and deformation regime of an advancing subduction system; Marlborough, New Zealand. Nature 2009, 460, 733–736. [Google Scholar] [CrossRef]
- Zhao, G.; Unsworth, M.; Zhan, Y.; Wang, L.; Chen, X.; Jones, A.; Tang, J.; Xiao, Q.; Wang, J.; Cai, J.; et al. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology 2012, 40, 1139–1142. [Google Scholar] [CrossRef]
- Qian, F.Y.; Zhao, Y.L.; Yu, M.M.; Wang, Z.X.; Liu, X.W.; Chang, S.M. Geoelectric resistivity anomalies before earthquakes. Sci. Sin. 1983, 26, 326–336. [Google Scholar]
- Qian, J.D. Regional study of the anomalous change in apparent resistivity before the Tangshan earthquake (M = 7.8, 1976) in China. Pure Appl. Geophys. 1985, 122, 901–920. [Google Scholar] [CrossRef]
- Qian, F.Y.; Zhao, Y.L.; Xu, T.C.; Zhang, H.K. A model of an impending—Earthquake precursor of geoelectricity triggered by tidal forces. Phys. Earth Planet. Inter. 1990, 62, 284–297. [Google Scholar] [CrossRef]
- Park, S.K.; Fitterman, D.V. Sensitivity of the telluric monitoring array in parkfield, california, to changes of resistivity. J. Geophys. Res. Atmos. 1990, 951, 15557–15571. [Google Scholar] [CrossRef]
- Park, S.K.; Johnston, M.J.S.; Madden, T.R.F.; Morgan, D.; Morrison, H.F. Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys. 1993, 31, 117–132. [Google Scholar] [CrossRef]
- Parkhomenko, E.I.; Bondarenko, A.T. Effect of uniaxial pressure on electric resistivity of rocks. Bull. Acad. Sci. USSR Geophys. Ser. 1960, 2, 326–332. [Google Scholar]
- Skagius, K.; Neretnieks, I. Diffusivity measurements and electrical resistivity measurements in rock samples under mechanical Stress. Water Resour. Res. 1986, 22, 570–580. [Google Scholar] [CrossRef]
- Jouniaux, L.; Pozzi, J.P.; Brochot, M.; Philippe, C. Resistivity changes induced by triaxial compression in saturated sandstones from Fontainebleau. C R Acad. Sci. 1992, 315, 1493–1499. [Google Scholar]
- Jouniaux, L.; Zamora, M.; Reuschlé, T. Electrical conductivity evolution of non-saturated carbonate rocks during deformation up to failure. Geophys. J. Int. 2006, 167, 1017–1026. [Google Scholar] [CrossRef] [Green Version]
- Glover, P.W.J.; Gomez, J.B.; Meredith, P.G.; Hayashi, K.; Sammonds, P.R.; Murrel, S.A.F. Damage of saturated rocks undergoing triaxial deformation using complex electrical conductivity measurements: Experimental results. Phys. Chem. Earth 1997, 22, 57–61. [Google Scholar] [CrossRef]
- Yu, H.Z.; Cheng, J.; Zhang, X.T.; Zhang, L.P.; Liu, J.; Zhang, Y.X. Multi-Methods combined analysis of future earthquake potential. Pure Appl. Geophys. 2012, 170, 173–183. [Google Scholar] [CrossRef]
- Ma, J.; Ma, S.H.; Liu, L.Q. The stages of anomalies before an earthquake and the characteristics of their spatial distribution. Seismol. Geol. 1995, 17, 363–371, (In Chinese with an English abstract). [Google Scholar]
- Scholz, C.H.; Sykes, L.R.; Aggrawal, Y.P. Earthquake prediction: A physical basis. Science 1973, 181, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.C.; Chen, X.Z.; Song, Z.P.; Yin, C. A new approach to earthquake prediction: The Load/Upload Response Ratio (LURR) theory. Pure Appl. Geophys. 1995, 145, 701–715. [Google Scholar] [CrossRef]
- Yin, X.C.; Wang, Y.C.; Peng, K.Y.; Bai, Y.L.; Wang, H.T. Development of a new approach to earthquake prediction: Load/Unload Response Ratio (Lurr) theory. Pure Appl. Geophys. 2000, 157, 2365–2383. [Google Scholar]
- Yin, X.C.; YU, H.Z.; Kukshenko, V.; Xu, Z.Y.; Wu, Z.S.; Li, M.; Peng, K.Y.; Elizarov, S.; Li, Q. Load-Unload Response ratio (LURR), Accelerating Energy release (AER) and State Vector evolution as precursors to failure of rock specimens. Pure Appl. Geophys. 2004, 161, 2405–2436. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.X.; Yin, X.C.; Peng, K.Y. Spatial and Temporal Variation of LURR and its Implication for the Tendency of Earthquake Occurrence in Southern California. Pure Appl. Geophys. 2004, 161, 2359–2367. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.; Prescott, W. Crustal deformation rates in the central and eastern U. S. Inferred from GPS. Geophys. Res. Lett. 2001, 28, 3733–3736. [Google Scholar] [CrossRef]
- Wu, W.W. Insight into the Characteristics of GPS Time Series in North China; Institute of Earthquake Forecasting, CEA: Beijing, China, 2014; pp. 46–47. [Google Scholar]
- Xu, X.W.; Zhang, X.K.; Ran, Y.K.; Cui, X.F.; Ma, W.T.; Shen, J.; Yang, X.; Han, Z.J.; Song, F.M.; Zhang, L.F. The preliminary study on Seismotectics of the 2003 AD Bachu-Jiash Earthquake (Ms6.8), southern Tian Shan. Seismol. Geol. 2006, 28, 161–178, (In Chinese with an English abstract). [Google Scholar]
- Scharer, K.M.; Burbank, D.W.; Chen, J.; Weldon, R.J.; Rubin, C.; Zhao, R.; Shen, J. Detachment folding in the Southwestern TianShan Tarim foreland, China: Shortening estimates and rates. J. Struct. Geol. 2004, 26, 2119–2137. [Google Scholar] [CrossRef]
- Yang, X.P.; Deng, Q.D.; Zhang, P.Z. crustal shortening of major nappe structures on the front margins of the Tianshan. Seismol. Geol. 2008, 30, 111–131. [Google Scholar]
- Allen, M.; Vincent, S.; Wheeler, P.J. Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim basin, northwest China. Tectonics 1999, 18, 639–654. [Google Scholar] [CrossRef]
- Li, A.; Ran, Y.; Xu, L.; Liu, H. Paleoseismic study of the east Kalpintage fault in southwest Tianshan based on deformation of alluvial fans and 10Be dating. Nat. Hazards 2013, 68, 1075–1087. [Google Scholar] [CrossRef]
- Li, A.; Ran, F.Y.; Gomez, J.A.T.; Jobe, H.; Xu, L. Segmentation of the Kepingtage thrust fault based on paleoearth-quake ruptures, southwestern Tianshan, China. Nat. Hazards 2020, 103, 1385–1406. [Google Scholar] [CrossRef]
- Yao, Y.; Wen, S.; Li, T.; Wang, C. The 2020 Mw6.0 Jiashi Earthquake: A Fold Earthquake Event in the Southern Tian Shan, Northwest China. Seismol. Res. Lett. 2020, 92, 859–869. [Google Scholar] [CrossRef]
- Lu, J.; Xue, S.; Qian, F.; Zhao, Y.; Guan, H.; Mao, X.; Ruan, A.; Yu, S.; Xiao, W. Unexpected changes in resistivity monitoring for earthquakes of the Longmen Shan in Sichuan, China, with a fixed Schlumberger sounding array. Phys. Earth Planet. Inter. 2004, 145, 87–97. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 25, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Li, G.R.; Sulitan, Y.S.; Ailixiati, Y.S.; Liu, D.Q.; Buaijier, K.; Zhao, L.; Ding, Y. Characteristics of GNSS anomalies before and after Jiashi Ms6.4 earthquake in Xinjiang on January 19th, 2020. Inland Earthq. 2020, 34, 70–78, (In Chinese with an English abstract). [Google Scholar]
- Zhao, Y.L.; Qian, F.Y.; Yang, T.C.; Liu, J.Y. The experiments on electric resistivity in situ. Acta Seismol. Sin. 1983, 5, 217–225, (In Chinese with an English abstract). [Google Scholar]
- Yu, H.Z.; Shen, Z.K.; Wan, Y.G.; Zhu, Q.Y.; Yin, X.C. Increasing critical sensitivity of the load/unload response ratio before large earthquakes with identified stress accumulation pattern. Tectonophysics 2006, 428, 87–94. [Google Scholar] [CrossRef]
- Yu, H.Z.; Zhu, Q.Y. A probabilistic approach for earthquake potential evaluation based on the load/unload response ratio method. Concurr. Comput. Pract. Exp. 2010, 22, 1520–1533. [Google Scholar] [CrossRef]
- Yu, H.Z.; Zhou, F.R.; Cheng, J.; Wan, Y.G. The sensitivity of load/unload response ratio and critical region selection before large earthquakes. Pure Appl. Geophys. 2015, 172, 173–183. [Google Scholar] [CrossRef]
- Yu, H.Z.; Yu, C.; Ma, Z.X.T.; Zhang, H.; Yao, Q.; Zhu, Q.Y. Temporal and spatial evolution of Load/Unload Response Ratio before the M7.0 Jiuzhaigou earthquake of Aug. 8, 2017 in Sichuan Province. Pure Appl. Geophys. 2020, 177, 321–331. [Google Scholar] [CrossRef]
- Walia, V.; Virk, H.S.; Bajwa, B.S. Radon precursory signals for some earthquakes of magnitude > 5 Occurred in N-W Himalaya: An overview. Pure Appl. Geophys. 2006, 163, 711–721. [Google Scholar] [CrossRef]
- Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; dieterich, J.H. Two models for earthquake forerunners. Pure Appl. Geophys. 1975, 113, 169–182. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, C.; Yu, H.; Yue, C.; Jia, D.; Ma, Y.; Zhang, Z.; Yang, W. Stress-Induced Apparent Resistivity Variations at the Kalpin Observatory and the Correlation with the 2020 Mw 6.0 Jiashi Earthquake. Atmosphere 2021, 12, 1420. https://doi.org/10.3390/atmos12111420
Wang Y, Yu C, Yu H, Yue C, Jia D, Ma Y, Zhang Z, Yang W. Stress-Induced Apparent Resistivity Variations at the Kalpin Observatory and the Correlation with the 2020 Mw 6.0 Jiashi Earthquake. Atmosphere. 2021; 12(11):1420. https://doi.org/10.3390/atmos12111420
Chicago/Turabian StyleWang, Yali, Chen Yu, Huaizhong Yu, Chong Yue, Donghui Jia, Yuchuan Ma, Zhiguang Zhang, and Wen Yang. 2021. "Stress-Induced Apparent Resistivity Variations at the Kalpin Observatory and the Correlation with the 2020 Mw 6.0 Jiashi Earthquake" Atmosphere 12, no. 11: 1420. https://doi.org/10.3390/atmos12111420
APA StyleWang, Y., Yu, C., Yu, H., Yue, C., Jia, D., Ma, Y., Zhang, Z., & Yang, W. (2021). Stress-Induced Apparent Resistivity Variations at the Kalpin Observatory and the Correlation with the 2020 Mw 6.0 Jiashi Earthquake. Atmosphere, 12(11), 1420. https://doi.org/10.3390/atmos12111420