Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model
Abstract
:1. Introduction
2. Methodology
3. Simulation Details
3.1. Physical and Chemical Schemes
3.2. Data Requirements
4. Results and Discussion
4.1. Model Sensitivity to Aerosol Mechanisms
4.2. Sensitivity Analysis of Aerosol–Meteorology Interactions and Aerosol Feedback Effects
5. Conclusions
- Model simulates PM10 better with MOSAIC as compared to MADE/SORGAM module. It was inferred that using the same dust emission scheme, the sectional approach (MOSAIC) had an advantage over the modal approach (MADE/SORGAM), which simulated higher mass concentrations for dust particles and could also capture the peak concentrations that occurred during the dust-storm period, while MADE/SORGAM showed significant underprediction.
- An overall net increase in radiation indicates that indirect effect dominates due to an increase in absorbing properties of aerosol that is reflected in an increase in PM10 concentration up to 12 μg m−3 for the direct + indirect feedback effect case.
- Spatially, about 40% of the domain showed a change in temperature on inclusion of direct feedback effect as compared to the 100% change in temperature over the study domain for direct + indirect feedback effect.
- For direct + indirect feedback case, an increase in PM10 concentrations (6 to 12 μg m−3) was noted due to an increase in absorbing aerosols and decrease in non-absorbing aerosols, which was attributed to the increase noted in radiation and consequently the temperature (0.15 to 0.25 K).
- The increase in temperature resulted in an increase in ozone concentrations (1 to 3 μg m−3) due to enhanced reaction rates of ozone production reactions and vice-versa for the direct feedback case.
- The warming effect noted due to an increase in temperature was also reflected in the increase in PBL height (about 50 m) with net effect from direct and indirect feedback together.
- As the present study focuses more on a specific climatic zone including greater extremes (i.e., semi-arid), the changes noted in meteorological and air quality parameters are having less variations compared to the reported values of other climatic zones (such as arid, temperate, cold and polar) in the literature. Although for the semi-arid region, temperature change seemed to be low when only the direct effect is considered, the change increased with both direct and indirect effect taken into account, which has impacted the air quality significantly. The vertical profile of concentrations was also affected with such a small change in temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, E.G.; Gustafson, W.I., Jr.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Fast Jerome, D.; Gustafson William, I.; Easter Richard, C.; Zaveri Rahul, A.; Barnard James, C.; Chapman Elaine, G.; Grell, G.A.; Peckham Steven, E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Liu, Y.; Park Rokjin, J.; Jacob Daniel, J.; Li, Q.; Kilaru, V.; Sarnat Jeremy, A. Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Saide, P.E.; Spak, S.N.; Carmichael, G.R.; Mena-Carrasco, M.A.; Yang, Q.; Howell, S.; Leon, D.C.; Snider, J.R.; Bandy, A.R.; Collet, J.L.; et al. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmos. Chem. Phys. 2012, 12, 3045–3064. [Google Scholar] [CrossRef] [Green Version]
- Schaap, M.; Apituley, A.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; de Leeuw, G. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, The Netherlands. Atmos. Chem. Phys. 2009, 9, 909–925. [Google Scholar] [CrossRef] [Green Version]
- Michael, M.; Yadav, A.; Tripathi, S.N.; Kanawade, V.P.; Gaur, A.; Sadavarte, P.; Venkataraman, C. Simulation of trace gases and aerosols over the Indian domain: Evaluation of the WRF-Chem model. Geosci. Model Dev. Discuss. 2014, 2014, 431–482. [Google Scholar] [CrossRef]
- Gupta, M.; Mohan, M. Assessment of contribution to PM10 concentrations from long range transport of pollutants using WRF/Chem over a subtropical urban airshed. Atmos. Pollut. Res. 2013, 4, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Seethala, C.; Pandithurai, G.; Fast, J.D.; Polade, S.D.; Reddy, M.S.; Peckham, S.E. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics—A case study over India. MAPAN 2011, 26, 269–284. [Google Scholar] [CrossRef]
- Mohan, M.; Gupta, M. Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India. Atmos. Environ. 2018, 185, 53–63. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Peckham, S.; Grell, G.A.; McKeen, S.A.; Barth, M.; Pfister, G.; Wiedinmyer, C.; Fast, J.D.; Gustafson, W.I.; Zaveri, R.A.; Easter, R.C.; et al. WRF/Chem Version 3.3 User’s Guide, NOAA Technical Memo; US Dept. of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Global Systems Division: Washington, DC, USA; Boudler, CO, USA, 2011; pp. 1–99.
- Zhang, H.; DeNero, S.P.; Joe, D.K.; Lee, H.H.; Chen, S.H.; Michalakes, J.; Kleeman, M.J. Development of a source oriented version of the WRF/Chem model and its application to the California regional PM10/PM2.5 air quality study. Atmos. Chem. Phys. 2014, 14, 485–503. [Google Scholar] [CrossRef] [Green Version]
- San, J.R.; Pérez, J.L.; Balzarini, A.; Baró, R.; Curci, G.; Forkel, R.; Galmarini, S.; Grell, G.; Hirtl, M.; Honzak, L.; et al. Sensitivity of feedback effects in CBMZ/MOSAIC chemical mechanism. Atmos. Environ. 2015, 115, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Forkel, R.; Werhahn, J.; Hansen, A.B.; McKeen, S.; Peckham, S.; Grell, G.; Suppan, P. Effect of aerosol-radiation feedback on regional air quality—A case study with WRF/Chem. Atmos. Environ. 2012, 53, 202–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, X.Y.; Jang, C.J. Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental U.S. using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem). Atmos. Environ. 2010, 44, 3568–3582. [Google Scholar] [CrossRef]
- Archer-Nicholls, S.; Lowe, D.; Schultz, D.M.; McFiggans, G. Aerosol–radiation–cloud interactions in a regional coupled model: The effects of convective parameterisation and resolution. Atmos. Chem. Phys. 2016, 16, 5573–5594. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Dickinson, R.E.; Chameides, W.L. Impact of aerosol indirect effect on surface temperature over East Asia. Proc. Natl. Acad. Sci. USA 2006, 103, 4371. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Yu, F. Simulation of particle formation and number concentration over the Eastern United States with the WRF-Chem + APM model. Atmos. Chem. Phys. 2011, 11, 11521–11533. [Google Scholar] [CrossRef] [Green Version]
- Forkel, R.; Balzarini, A.; Baró, R.; Bianconi, R.; Curci, G.; Jiménez-Guerrero, P.; Hirtl, M.; Honzak, L.; Lorenz, C.; Im, U.; et al. Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. Atmos. Environ. 2015, 115, 630–645. [Google Scholar] [CrossRef]
- Kong, X.; Forkel, R.; Sokhi, R.S.; Suppan, P.; Baklanov, A.; Gauss, M.; Brunner, D.; Barò, R.; Balzarini, A.; Chemel, C.; et al. Analysis of meteorology–chemistry interactions during air pollution episodes using online coupled models within AQMEII phase2. Atmos. Environ. 2015, 115, 527–540. [Google Scholar] [CrossRef]
- WHO. WHO Global Urban Ambient Air Pollution Database. Update 2018. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ (accessed on 11 May 2018).
- OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction; OECD Publishing: Paris, France, 2012. [Google Scholar] [CrossRef]
- Gupta, M.; Mohan, M. Validation of WRF/Chem model and sensitivity of chemical mechanisms to ozone simulation over megacity Delhi. Atmos. Environ. 2015, 122, 220–229. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, C.; Liu, X.; Zhang, M.; Leung, L.R. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia. Atmos. Environ. 2014, 92, 250–266. [Google Scholar] [CrossRef]
- Kumar, R.; Naja, M.; Pfister, G.G.; Barth, M.C.; Brasseur, G.P. Source attribution of carbon monoxide in India and surrounding regions during wintertime. J. Geophys. Res. Atmos. 2013, 118, 1981–1995. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Naja, M.; Pfister, G.G.; Barth, M.C.; Wiedinmyer, C.; Brasseur, G.P. Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): Chemistry evaluation and initial results. Geosci. Model Dev. 2012, 5, 619–648. [Google Scholar] [CrossRef] [Green Version]
- Beig, G.; Chate, D.M.; Ghude, S.D.; Mahajan, A.S.; Srinivas, R.; Ali, K.; Sahu, S.K.; Parkhi, N.; Surendran, D.; Trimbake, H.R. Quantifying the effect of air quality control measures during the 2010 Commonwealth Games at Delhi, India. Atmos. Environ. 2013, 80, 455–463. [Google Scholar] [CrossRef]
- Jiang, X.; Barth, M.C.; Wiedinmyer, C.; Massie, S.T. Influence of anthropogenic aerosols on the Asian monsoon: A case study using the WRF-Chem model. Atmos. Chem. Phys. Discuss. 2013, 2013, 21383–21425. [Google Scholar] [CrossRef] [Green Version]
- Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G.R. Air quality in Delhi during the Commonwealth Games. Atmos. Chem. Phys. 2014, 14, 10619–10630. [Google Scholar] [CrossRef] [Green Version]
- Sati, A.P.; Mohan, M. Impact of increase in urban sprawls representing five decades on summer-time air quality based on WRF-Chem model simulations over central-National Capital Region, India. Atmos. Pollut. Res. 2021, 12, 404–416. [Google Scholar] [CrossRef]
- Mohan, M.; Bhati, S. Analysis of WRF Model Performance over Subtropical Region of Delhi, India. Adv. Meteorol. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- WRF. 2012. Available online: http://www.mmm.ucar.edu/wrf/users/downloads.html (accessed on 22 March 2012).
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; et al. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. [Google Scholar] [CrossRef] [Green Version]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, A.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- CPCB. 2018. Available online: http://www.cpcb.gov.in/CAAQM/frmUserAvgReportCriteria.aspx (accessed on 17 May 2018).
- WMO. Overview of Tools and Methods for Meteorological and Air Pollution Mesoscale Model Evaluation and User Training. Joint Report of COST Action 728 and GURME; World Meteorological Organization: Geneva, Switzerland, 2008; Available online: http://www.cost.eu/media/publications/09-08-Overview-of-Tools-and-Methods-for-Meteorological-and-Air-Pollution-Mesoscale (accessed on 12 March 2012).
- Ahmadov, R.; McKeen, S.A.; Robinson, A.L.; Bahreini, R.; Middlebrook, A.M.; Gouw, J.A.; Meagher, J.; Hsie, E.-Y.; Edgerton, E.; Shaw, S.; et al. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Fast, J. How Do We Know that Aerosol Forecasts are Improving for the Right Reasons? Using Testbeds to Address Modeling Challenges; Pacific Northwest National Laboratory, IWAQFR: Washington, DC, USA; Boulder, CO, USA, 2009. [Google Scholar]
- Mann, G.W.; Carslaw, K.S.; Ridley, D.A.; Spracklen, D.V.; Pringle, K.J.; Merikanto, J.; Korhonen, H.; Schwarz, J.P.; Lee, L.A.; Manktelow, P.T.; et al. Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. Atmos. Chem. Phys. 2012, 12, 4449–4476. [Google Scholar] [CrossRef] [Green Version]
- Zaveri Rahul, A.; Easter Richard, C.; Fast Jerome, D.; Peters Leonard, K. Model for Simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ziegenbein, C.; Ebel, A. The parameterization of the sulfate-nitrate-ammonia aerosol system in the long-range transport model EURAD. Meteorol. Atmos. Phys. 1995, 57, 101–114. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann Ingmar, J.; Hass, H.; Binkowski Francis, S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Bromley Leroy, A. Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 1973, 19, 313–320. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Wexler, A.S.; Lurmann, F.W.; Seinfeld, J.H. Modelling urban and regional aerosols—I. model development. Atmos. Environ. 1994, 28, 531–546. [Google Scholar] [CrossRef]
- Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S. Modal Aerosol Dynamics Modeling. Rep. 600/3—91/020. Atmospheric Research and Exposure Assess; Lab., U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1991; (available as NTIS PB91- 161729/AS from Natl. Tech. Inf. Serv., Springfield, VA, USA, 1991).
- Jacobson, M.Z.; Turco, R.P.; Jensen, E.J.; Toon, O.B. Modeling coagulation among particles of different composition and size. Atmos. Environ. 1994, 28, 1327–1338. [Google Scholar] [CrossRef]
- Zaveri Rahul, A.; Easter Richard, C.; Peters Leonard, K. A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA). J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Zaveri Rahul, A.; Easter Richard, C.; Wexler Anthony, S. A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Tewari, M.; Warner, T.T.; Coirier, W.J.; Kim, S. Numerical Modeling Study of Wind Flow Over the Salt Lake City Region Using Integrated WRF– Noah–UCM Model at Meso–Gamma Scale. 2005. Available online: http://www.mmm.ucar.edu/wrf/users/workshops/WS2005/presentations/session4/3–Tewari.pdf (accessed on 12 March 2012).
- Spak, S.N.; Holloway, T. Seasonality of speciated aerosol transport over the Great Lakes region. J. Geophys. Res. Atmos. 2009, 114, D08302. [Google Scholar] [CrossRef]
- Zawar-Reza, P.; Kingham, S.; Pearce, J. Evaluation of a year-long dispersion modelling of PM10 using the mesoscale model TAPM for Christchurch, New Zealand. Sci. Total Environ. 2005, 349, 249–259. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, X.; Leung, L.R.; Johnson, B.; McFarlane, S.A.; Gustafson, W.I., Jr.; Fast, J.D.; Easter, R. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmos. Chem. Phys. 2010, 10, 8821–8838. [Google Scholar] [CrossRef] [Green Version]
- Govardhan, G.; Nanjundiah, R.S.; Satheesh, S.K.; Krishnamoorthy, K.; Kotamarthi, V.R. Performance of WRF-Chem over Indian region: Comparison with measurements. J. Earth Syst. Sci. 2015, 124, 875–896. [Google Scholar] [CrossRef] [Green Version]
- Gunturu, U.B. Aerosol-Cloud Interactions: A New Perspective in Precipitation Enhancement. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. Available online: https://globalchange.mit.edu/sites/default/files/Gunturu_PhD_10.pdf (accessed on 27 March 2012).
- Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V.A.; Kumar, P.; Kottmeier, C.; Blahak, U. Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 2012, 12, 4045–4063. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227. [Google Scholar] [CrossRef] [PubMed]
- McComiskey, A.; Feingold, G.; Frisch, A.S.; Turner David, D.; Miller Mark, A.; Chiu, J.C.; Min, Q.; Ogren John, A. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Fast, J. Aerosol-Radiation-Microphysics Interactions; WRF-Chem Tutorial, 3 August 2015, Boulder, CO, USA; Pacific Northwest National Laboratory: Washington, DC, USA, 2015. Available online: https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2015/WRF_CHEM_feedbacks.pdf (accessed on 27 May 2012).
- NASA—National Aeronautics and Space Administration. Science Mission Directorate. The Earth’s Radiation Budget. 2010. Available online: http://science.nasa.gov/ems/13_radiationbudget (accessed on 17 January 2018).
- Zhou, Y.; Savijari, H. The effect of aerosols on long wave radiation and global warming. Atmos. Environ. 2014, 135–136, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tang, B.-H.; Wu, H.; Tang, R.; Zhao, L. Estimation of downwelling surface longwave radiation under heavy dust aerosol sky. Remote Sens. 2017, 9, 207. [Google Scholar] [CrossRef] [Green Version]
Temperature (K) | Shortwave Downward Flux (W m−2) | Outgoing Longwave Radiation Flux (W m−2) | PM10 Concentration (μg m−3) | Ozone Concentration (μg m−3) | |
---|---|---|---|---|---|
Impact of Direct Effect | |||||
Present Study | −0.1 to 0.1 | −6 to 6 | −2 to −1 | −6 to −3 | −5 to −1 |
Reported Values [19,20] | −0.35 to −0.05 | −32 to −2 | - | −6 to 1 | −1.8 to −0.2 |
Impact of Direct Effect + Indirect Effect | |||||
Present Study | 0.15 to 0.25 | 2 to 8 | 1 to 5 | 6 to 12 | 1 to 3 |
Reported Values [19,20] | −0.35 to 0.45 | −32 to 36 | - | −10 to 6 | 2 to 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, M.; Mohan, M. Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model. Atmosphere 2021, 12, 1417. https://doi.org/10.3390/atmos12111417
Gupta M, Mohan M. Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model. Atmosphere. 2021; 12(11):1417. https://doi.org/10.3390/atmos12111417
Chicago/Turabian StyleGupta, Medhavi, and Manju Mohan. 2021. "Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model" Atmosphere 12, no. 11: 1417. https://doi.org/10.3390/atmos12111417
APA StyleGupta, M., & Mohan, M. (2021). Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model. Atmosphere, 12(11), 1417. https://doi.org/10.3390/atmos12111417