Tracers from Biomass Burning Emissions and Identification of Biomass Burning
Abstract
:Highlights
- Key tracers from different biomass burning emissions are introduced in this review.
- Methods applied to identify biomass burning types are introduced, and their advantages and disadvantages are also concluded.
- The details of PMF to infer biomass burning types and source contributions are also included.
1. Introduction
1.1. Biomass Burning Process
1.2. Organic Compounds from Biomass Burning
1.2.1. Lignin Products
Softwood Lignin
Hardwood Lignin
Grass Lignin
1.2.2. Cellulose
1.3. LC-MS/MS
2. Determination of Biomass Burning Types
2.1. The Ratios of Tracers to Identify the Type of Biomass Burning
2.1.1. Levoglucosan/K+
2.1.2. Levoglucosan/Mannosan
2.1.3. Levoglucosan/OC or Levoglucosan/EC
2.1.4. Vanillic Acid/Syringic Acid
2.1.5. Vanillic/p-hydroxybenzoic Acid
2.1.6. K+/EC, char-EC/soot-EC, FLU/(FLU + PYR) and IP/(IP + BgP)
2.2. Principal Component Analysis
2.2.1. Introduction of PCA
2.2.2. Application of PCA
2.3. Source Tracer Ratio
2.3.1. Introduction of Source Tracer Ratio
2.3.2. Application of Source Tracer Ratio
2.4. PMF
2.4.1. Introduction of PMF
2.4.2. The Application of PMF
3. Summary and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Werf, G.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Leeuwen, T. Global fire emissions and the contribution of deforestation, savanna, forest, agriculture, and peat fires. Atmos. Chem. Phys. 2010, 10, 16153–16230. [Google Scholar]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Gustafsson, Ö.; Kruså, M.; Zencak, Z.; Sheesley, R.J.; Granat, L.; Engström, E.; Praveen, P.S.; Rao, P.S.P.; Leck, C.; Rodhe, H. Brown Clouds over South Asia: Biomass or Fossil Fuel Combustion? Science 2009, 323, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, C.; Habib, G.; Eiguren-Fernandez, A.; Miguel, A.H.; Friedlander, S.K. Residential Biofuels in South Asia: Carbonaceous Aerosol Emissions and Climate Impacts. Science 2005, 307, 1454–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iinuma, Y.; Keywood, M.; Herrmann, H. Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires. Atmos. Environ. 2016, 130, 54–63. [Google Scholar] [CrossRef]
- Zangrando, R.; Barbaro, E.; Zennaro, P.; Rossi, S.; Kehrwald, N.M.; Gabrieli, J.; Barbante, C.; Gambaro, A. Molecular markers of biomass burning in arctic aerosols. Environ. Sci. Technol. 2013, 47, 8565–8574. [Google Scholar] [CrossRef]
- Tang, Y. Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model. J. Geophys. Res. Atmos. 2003, 108, 8824. [Google Scholar] [CrossRef] [Green Version]
- Giungato, P.; Barbieri, P.; Cozzutto, S.; Licen, S. Sustainable domestic burning of residual biomasses from the Friuli Venezia Giulia region. J. Clean. Prod. 2017, 172, 3841–3850. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crutzen, P.J.; Heidt, L.E.; Krasnec, J.P.; Pollock, W.H. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature 1979, 282, 253–256. [Google Scholar] [CrossRef]
- Christian, T.J.; Yokelson, R.J.; Carvalho, J.A., Jr. The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. J. Geophys. Res. 2007, 112, D18308. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Kawamura, K.; Ram, K.; Kang, S.; Loewen, M.; Gao, S.; Wu, G.; Fu, P.; Zhang, Y.; Bhattarai, H.; et al. Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environ. Pollut. 2019, 247, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Cullis, C.F.; Benson, S.W.; Fristrom, R.M.; Homann, K.H.; Blazowski, W.S. The Mechanisms of Pyrolysis Oxidation, and Burning of Organic Materials; U.S. Government Printing Office: Washington, DC, USA, 1972.
- Simoneit, B.; Elias, V.O. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Mar. Chem. 2000, 69, 301–312. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Kawamura, K.; Izawa, Y.; Mochida, M.; Shiraiwa, T. Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia. Geochim. Cosmochim. Acta 2012, 99, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Wang, X.C.; Li, Y.; Trengove, R.; Hu, Z.; Mi, M.; Li, X.; Yu, J.; Hunter, B.; He, T. Organic tracers from biomass burning in snow from the coast to the ice sheet summit of East Antarctica. Atmos. Environ. 2019, 201, 231–241. [Google Scholar] [CrossRef]
- Chen, L.; Li, Q.; Wu, D.; Sun, H.; Wei, Y.; Ding, X.; Chen, H.; Cheng, T.; Chen, J. Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Sci. Total Environ. 2019, 674, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.; Rogge, W.F.; Mazurek, M.A.; Standley, L.J.; Cass, G.R. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ. Sci. Technol. 1993, 27, 2533–2541. [Google Scholar] [CrossRef]
- Shakya, K.M.; Louchouarn, P.; Griffin, R.J. Lignin-Derived Phenols in Houston Aerosols: Implications for Natural Background Sources. Environ. Sci. Technol. 2011, 45, 8268–8275. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, S.B.; Miller, D.J.; Barkley, R.M.; Krieger, M.S. Identification of methoxylated phenols as candidate tracers for atmospheric wood smoke pollution. Environ. Sci. Technol. 1988, 22, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, S.B.; Miller, D.J.; Langenfeld, J.J.; Krieger, M.S. PM-10 high-volume collection and quantitation of semi- and nonvolatile phenols, methoxylated phenols, alkanes, and polycyclic aromatic hydrocarbons from winter urban air and their relationship to wood smoke emissions. Environ. Sci. Technol. 1992, 26, 2251–2262. [Google Scholar] [CrossRef]
- Sakakibara, J.; Ina, H. Recent Development on the Chemistry of Lignan Compounds. J. Synth. Org. Chem. Jpn. 1975, 33, 604–623. [Google Scholar] [CrossRef]
- Grimshaw, J. Depsides, Hydrolysable Tannins, Lignans, Lignin and Humic Acid. In Rodd’s Chemistry of Carbon Compounds, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Standley, L.J.; Simoneit, B. Resin diterpenoids as tracers for biomass combustion aerosols. J. Atmos. Chem. 1994, 18, 1–15. [Google Scholar] [CrossRef]
- Hedges, J.I.; Ertel, J.R. Characterization of lignin by Gas Capillary Chromatography of Cupric Oxide Oxidation Products. Anal. Chem. 1981, 54, 174–178. [Google Scholar] [CrossRef]
- Hawthorne, S.B.; Krieger, M.S.; Miller, D.J.; Mathiason, M.B. Collection and quantitation of methoxylated phenol tracers for atmospheric pollution from residential wood stoves. Environ. Sci. Technol. 1989, 23, 129–134. [Google Scholar] [CrossRef]
- Wong, J.; Tsagkaraki, M.; Tsiodra, I.; Mihalopoulos, N.; Weber, R.J. Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning. Atmos. Chem. Phys. 2019, 19, 7319–7334. [Google Scholar]
- Oros, D.R.; Simoneit, B. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 2000, 79, 515–536. [Google Scholar] [CrossRef]
- Spindler, G.; Gnauk, T.; Grüner, A.; Iinuma, Y.; Müller, K.; Scheinhardt, S.; Herrmann, H. Size-segregated characterization of PM 10 at the EMEP site Melpitz (Germany) using a five-stage impactor: A six year study. J. Atmos. Chem. 2012, 69, 127–157. [Google Scholar] [CrossRef]
- Myers-Pigg, A.N.; Griffin, R.J.; Louchouarn, P.; Norwood, M.J.; Sterne, A.; Cevik, B.K. Signatures of Biomass Burning Aerosols in the Plume of a Saltmarsh Wildfire in South Texas. Environ. Sci. Technol. 2016, 50, 9308–9314. [Google Scholar] [CrossRef]
- Shafizadeh, F. The chemistry of pyrolysis and combustion. Adv. Chem. 1984, 207, 489–529. [Google Scholar]
- Richards, G.N.; Shafizadeh, F.; Stevenson, T.T. Influence of sodium chloride on volatile products formed by pyrolysis of cellulose: Identification of hydroxybenzenes and 1-hydroxy-2-propanone as major products. Carbohydr. Res. 1983, 117, 322–327. [Google Scholar] [CrossRef]
- Hakeem, I.G.; Halder, P.; Marzbali, M.H.; Patel, S.; Shah, K. Research progress on levoglucosan production via pyrolysis of lignocellulosic biomass and its effective recovery from bio-oil. J. Environ. Chem. Eng. 2021, 9, 105614. [Google Scholar] [CrossRef]
- Hornig, J.F.; Soderberg, R.H.; Barefoot, A.C.; Galasyn, J.F. Wood smoke analysis: Vaporization losses of PAH from filters and levoglucosan as a distinctive marker for wood smoke. In Polynuclear Aromatic Hydrocarbons: Mechanisms, Methods, and Metabolism; Battelle Press: Columbus, OH, USA, 1985. [Google Scholar]
- Steven, B.; Taehyoung, L.; Paul, R.; Jeffrey, C. Wintertime Residential Biomass Burning in Las Vegas, Nevada; Marker Components and Apportionment Methods. Atmosphere 2016, 7, 58. [Google Scholar]
- Locker, H.B. The Use of Levoglucosan to Assess the Environmental Impact of Residential Wood-Burning on Air Quality. Ph.D. Thesis, Dartmouth College, Hanover, NH, USA, 1988. [Google Scholar]
- Meng, J.; Liu, X.; Hou, Z.; Yi, Y.; Yan, L.; Li, Z.; Cao, J.; Li, J.; Wang, G. Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in the urban atmosphere of the North China Plain: Implications for aqueous phase formation of SOA during the haze periods. Sci. Total Environ. 2020, 705, 135256. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Wang, G.; Zhang, T.; Li, L. Molecular characteristics of organic compositions in fresh and aged biomass burning aerosols. Sci. Total Environ. 2020, 741, 140247. [Google Scholar] [CrossRef] [PubMed]
- Hennigan, C.J.; Sullivan, A.P.; Collett, J.L.; Robinson, A.L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys. Res. Lett. 2010, 37, L09806. [Google Scholar] [CrossRef] [Green Version]
- Mochida, M.; Kawamura, K. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. J. Geophys. Res. Atmos. 2004, 109, D21202. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.Q.; Fang, Z.; Zhao, Z.L.; Zheng, A.Q.; Wang, X.; Li, H.B. Levoglucosan and its hydrolysates via fast pyrolysis of lignocellulose for microbial biofuels: A state-of-the-art review. Renew. Sustain. Energy Rev. 2019, 105, 215–229. [Google Scholar] [CrossRef]
- Bates, A.L.; Hatcher, P.G.; Lerchiii, H.; Cecil, C.B.; Neuzil, S.G. Studies of a peatified angiosperm log cross section from Indonesia by nuclear magnetic resonance spectroscopy and analytical pyrolysis. Org. Geochem. 1991, 17, 37–45. [Google Scholar] [CrossRef]
- Fabbri, D.; Torri, C.; Simoneit, B.R.T.; Marynowski, L.; Rushdi, A.I.; Fabiańska, M.J. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 2009, 43, 2286–2295. [Google Scholar] [CrossRef]
- Hoffmann, D.; Iinuma, Y.; Herrmann, H. Analysis of polar aromatic biomass burning tracers in combustion aerosol using HPLC-MS. In Proceedings of the European Aerosol Conference (EAC), Ghent, Belgium, 28 August–2 September 2005. [Google Scholar]
- Hoffmann, D.; Iinuma, Y.; Herrmann, H. Development of a method for fast analysis of phenolic molecular markers in biomass burning particles using high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2007, 1143, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Zangrando, R.; Barbaro, E.; Vecchiato, M.; Kehrwald, N.M.; Barbante, C.; Gambaro, A. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols. Sci. Total Environ. 2016, 544, 606–616. [Google Scholar] [CrossRef]
- Li, W.; Chen, M.; Ge, X.; Gu, C.; Yu, W.; Nie, D. Validation of a sensitive high performance liquid chromatography tandem mass spectrometric method for measuring carbohydrates in aerosol samples. J. Chromatogr. A 2020, 1619, 460941. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Qi, L.; Yu, W.; Nie, D.; Shi, S.; Gu, C.; Ge, X.; Chen, M. Molecular characterization of biomass burning tracer compounds in fine particles in Nanjing, China. Atmos. Environ. 2020, 240, 117837. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Oros, D.R.; Elias, V.O. Molecular tracers for smoke from charring/burning of chitin biopolymer. Chemosphere—Glob. Chang. Sci. 2000, 2, 101–105. [Google Scholar] [CrossRef]
- Schmidl, C.; Marr, I.L.; Caseiro, A.; Kotianova, P.; Berner, A.; Bauer, H.; Kasper-Giebl, A.; Puxbaum, H. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos. Environ. 2008, 42, 126–141. [Google Scholar] [CrossRef]
- Pio, C.A.; Legrand, M.; Alves, C.A.; Oliveira, T.; Afonso, J.; Caseiro, A.; Puxbaum, H.; Sanchez-Ochoa, A.; Gelencsér, A. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos. Environ. 2008, 42, 7530–7543. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Holden, A.S.; Patterson, L.A.; Mcmeeking, G.R.; Kreidenweis, S.M.; Malm, W.C.; Hao, W.M.; And, C.; Collett, J.L. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. J. Geophys. Res. Atmos. 2008, 113, D22302. [Google Scholar] [CrossRef]
- Thepnuan, D.; Chantara, S.; Lee, C.T.; Lin, N.H.; Tsai, Y.I. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Sci. Total Environ. 2019, 658, 708–722. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.Z.; Sun, L.; Tian, Y.; Shi, G.; Feng, Y. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. J. Environ. Sci. 2021, 99, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Characterization of Fine Particle Emissions from Burning Church Candles. Environ. Sci. Technol. 1999, 33, 2352–2362. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Wood Types Grown in the Midwestern and Western United States. Environ. Eng. Sci. 2004, 21, 387–409. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical Characterization of Fine Particle Emissions from the Wood Stove Combustion of Prevalent United States Tree Species. Environ. Eng. Sci. 2004, 21, 705–721. [Google Scholar] [CrossRef]
- Cheng, Y.; Engling, G.; He, K.B.; Duan, F.K.; Ma, Y.L.; Du, Z.Y.; Liu, J.M.; Zheng, M.; Weber, R.J. Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 2013, 13, 7765–7781. [Google Scholar] [CrossRef] [Green Version]
- Mkoma, S.L.; Kawamura, K.; Fu, P.Q. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys. 2013, 13, 10325–10338. [Google Scholar] [CrossRef] [Green Version]
- Sheesley, R.J.; Schauer, J.J.; Chowdhury, Z.; Cass, G.R.; Simoneit, B.R.T. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. J. Geophys. Res. Atmos. 2003, 108, D22302. [Google Scholar] [CrossRef] [Green Version]
- Engling, G.; Lee, J.J.; Tsai, Y.-W.; Lung, S.-C.C.; Chou, C.C.K.; Chan, C.-Y. Size-Resolved Anhydrosugar Composition in Smoke Aerosol from Controlled Field Burning of Rice Straw. Aerosol Sci. Technol. 2009, 43, 662–672. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Tao, J.; Su, L. Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season. Atmos. Environ. 2013, 79, 632–640. [Google Scholar] [CrossRef]
- Zhu, C.; Kawamura, K.; Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 2015, 15, 1959–1973. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Obrist, D.; Zielinska, B.; Gertler, A. Particulate emissions from different types of biomass burning. Atmos. Environ. 2013, 72, 27–35. [Google Scholar] [CrossRef]
- Schmidl, C.; Luisser, M.; Padouvas, E.; Lasselsberger, L.; Rzaca, M.; Ramirez-Santa Cruz, C.; Handler, M.; Peng, G.; Bauer, H.; Puxbaum, H. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmos. Environ. 2011, 45, 7443–7454. [Google Scholar] [CrossRef]
- Pashynska, V.; Vermeylen, R.; Vas, G.; Maenhaut, W.; Claeys, M. Development of a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols. J. Mass Spectrom. 2002, 37, 1249–1257. [Google Scholar] [CrossRef]
- Fu, P.; Zhuang, G.; Sun, Y.; Wang, Q.; Chen, J.; Ren, L.; Yang, F.; Wang, Z.; Pan, X.; Li, X.; et al. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmos. Environ. 2016, 130, 64–73. [Google Scholar] [CrossRef]
- Fu, P.; Kawamura, K.; Kobayashi, M.; Simoneit, B.R.T. Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmos. Environ. 2012, 55, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Fu, P.; Kawamura, K.; Yang, F.; Zhang, H.; Zang, Z.; Ren, H.; Ren, L.; Zhao, Y.; Sun, Y.; et al. Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. Atmos. Chem. Phys. 2018. under review. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.G.; Schauer, J.J.; Cass, G.R.; Simoneit, B.R. Highly polar organic compounds present in wood smoke and in the ambient atmosphere. Environ. Sci. Technol. 2001, 35, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical characterzation of fine particle emissions from the fireplace combustion of woods grown in the Southern United States. Environ. Sci. Technol. 2002, 36, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Engling, G.; Carrico, C.M.; Kreidenweis, S.M.; Collett, J.L.; Day, D.E.; Malm, W.C.; Lincoln, E.; Hao, W.M.; Iinuma, Y.; Herrmann, H. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos. Environ. 2006, 40, S299–S311. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identifification and emission factors of molecular tracers in organic aerosols from biomass burning. Part 2. Deciduous trees. Appl. Geochem. 2001, 16, 1545–1565. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identifification and emission factors of molecular tracers in organic aerosols from biomass burning. Part 1. Temperate climate conifers. Appl. Geochem. 2001, 16, 1513–1544. [Google Scholar] [CrossRef]
- Otto, A.; Gondokusumo, R.; Simpson, M.J. Characterization and quantifification of biomarkers from biomass burning at a recent wildfifire site in Northern Alberta, Canada. Appl. Geochem. 2006, 21, 166–183. [Google Scholar] [CrossRef]
- Ward, T.J.; Hamilton, R.F., Jr.; Dixon, R.W.; Paulsen, M.; Simpson, C.D. Characterization and evaluation of smoke tracers in PM: Results from the 2003 Montana wildfifire season. Atmos. Environ. 2006, 40, 7005–7017. [Google Scholar] [CrossRef]
- Oros, D.R.; Radzi bin Abas, M.; Omar, N.Y.M.J.; Rahman, N.A.; Simoneit, B.R.T. Identifification and emission factors of molecular tracers in organic aerosols from biomass burning: 3. Grasses. Appl. Geochem. 2006, 21, 919–940. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Simoneit, B.R.T. Source profifiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests. Environ. Sci. Technol. 2008, 40, 8310–8316. [Google Scholar] [CrossRef] [PubMed]
- Yttri, K.E.; Dye, C.; Slørdal, L.H.; Braathen, O.-A. Quantifification of monosaccharide anhydrides by liquid chromatography combined with mass spectrometry: Application to aerosol samples from an urban and a suburban site inflfluenced by small-scale wood burning. J. Air Waste Manag. Assoc. 2005, 55, 1169–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoneit, B.R.T.; Elias, V.O.; Kobayashi, M.; Kawamura, K.; Rushdi, A.I.; Medeiros, P.M.; Rogge, W.F.; Didyk, B.M. Sugars—dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 2004, 38, 5939–5949. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.R.T.; Kobayashi, M.; Mochida, M.; Kawamura, K.; Lee, M.-H.; Lim, H.-J.; Turpin, B.J.; Komazaki, Y. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, P.M.; Conte, M.H.; Weber, J.C.; Simoneit, B.R.T. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmos. Environ. 2006, 40, 1694–1705. [Google Scholar] [CrossRef] [Green Version]
- Zdráhal, Z.; Oliveira, J.; Vermeylen, R.; Claeys, M.; Maenhaut, W. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environ. Sci. Technol. 2002, 36, 747–753. [Google Scholar] [CrossRef]
- Sandradevi, J.; Prevot, A.S.H.; Alfarra, M.R.; Szidat, S.; Wehrli, M.N.; Ruff, M.; Weimer, S.; Lanz, V.A.; Weingartner, E.; Perron, N.; et al. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. Discuss. 2008, 8, 8091–8118. [Google Scholar]
- Jung, J.; Lee, S.; Kim, H.; Kim, D.; Lee, H.; Oh, S. Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period. Atmos. Environ. 2014, 89, 642–650. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos. Environ. 2009, 43, 4722–4732. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Kim, J.E.; Zhuanshi, H.; Kim, Y.J.; Kang, G.U. Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea. J. Air Waste Manag. Assoc. 2004, 54, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Wan, X.; Kang, S.; Li, Q.; Rupakheti, D.; Zhang, Q.; Guo, J.; Chen, P.; Tripathee, L.; Rupakheti, M.; Panday, A.K.; et al. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning. Atmos. Chem. Phys. 2017, 17, 8867–8885. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y.; Tohno, S.; Amil, N.; Latif, M.T.; Oda, M.; Matsumoto, J.; Mizohata, A. Annual variations of carbonaceous PM2.5 in Malaysia: Influence by Indonesian peatland fires. Atmos. Chem. Phys. 2015, 15, 13319–13329. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Xu, B.; Dong, X.; Zheng, X.; Wan, X.; Kang, S.; Song, Q.; Kawamura, K.; Cong, Z. Biomass-burning derived aromatic acids in NIST standard reference material 1649b and the environmental implications. Atmos. Environ. 2018, 185, 180–185. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, S.C.; Kawamura, K.; Zhang, Y.L. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Sci. Total Environ. 2016, 572, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Rajput, P.; Sarin, M.; Sharma, D.; Singh, D. Characteristics and Emission Budget of Carbonaceous Species from Post-Harvest Agricultural-Waste Burning in Source Region of the Indo-Gangetic Plain. Tellus Ser. B Chem. Phys. Meteorol. 2014, 66, 21026. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Watson, J.G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 2004, 54, 185–208. [Google Scholar] [CrossRef]
- Chen, L.W.A.; Moosmueller, H.; Arnott, W.P.; Chow, J.C.; Watson, J.G.; Susott, R.A.; Babbitt, R.B.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environ. Sci. Technol. 2007, 41, 4317–4325. [Google Scholar] [CrossRef]
- Han, Y.M.; Cao, J.J.; Lee, S.C.; Ho, K.F.; An, Z.S. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmos. Chem. Phys. 2010, 10, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Lee, M.; Lee, G.; Kim, S.; Yoon, S.; Kang, K. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos. Chem. Phys. Discuss. 2012, 12, 2007–2024. [Google Scholar] [CrossRef] [Green Version]
- Idris, S.S.; Rahman, N.A.; Ismail, K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour. Technol. 2012, 123, 581–591. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Zhang, Q.; Lei, Y.; Huang, Y.; Niu, X.; Xu, H.; Cao, J.; Ho, S.S.H.; et al. Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China. Atmos. Environ. 2019, 205, 36–45. [Google Scholar] [CrossRef]
- Wang, L.; Qi, J.H.; Shi, J.H.; Chen, X.J.; Gao, H.W. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea. Atmos. Environ. 2013, 70, 425–434. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X.; Chen, J.; Zhang, F.; He, C.; Du, K.; Wang, Y. Characterization of PM10 atmospheric aerosol at urban and urban background sites in Fuzhou city, China. Environ. Sci. Pollut. Res. Int. 2012, 19, 1443–1453. [Google Scholar] [CrossRef]
- Yuan, B.; Liu, R.; Shao, R.; Sihua, L.U.; Streets, R.G. Biomass burning contributions to ambient VOCs species at a receptor site in the Pearl River Delta (PRD), China. Environ. Sci. Technol. 2010, 44, 4577. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Chen, M.; Hu, K.; Ge, X.; Nie, D.; Gu, C.; Yu, W.; Cheng, Y. Carbohydrates observations in suburb Nanjing, Yangtze River of Delta during 2017–2018: Concentration, seasonal variation, and source apportionment. Atmos. Environ. 2020, 243, 117843. [Google Scholar] [CrossRef]
- Singhai, A.; Habib, G.; Raman, R.S.; Gupta, T. Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environ. Sci. Pollut. Res. 2017, 24, 445–462. [Google Scholar]
- Yao, L.; Yang, L.; Yuan, Q.; Yan, C.; Dong, C.; Meng, C.; Sui, X.; Yang, F.; Lu, Y.; Wang, W. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 2016, 541, 590–598. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T.Y.; Yi, S.M.; Heo, J. Source apportionment of PM2.5 using positive matrix factorization (PMF) at a rural site in Korea. J. Environ. Manag. 2018, 214, 325–334. [Google Scholar] [CrossRef]
- Kumagai, K. Characterization and Source Apportionment Studies of PM2.5 Using Organic Marker-based Positive Matrix Factorization. J. Jpn. Soc. Atmos. Environ. 2018, 53, A50–A52. [Google Scholar]
- Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmos. Chem. Phys. 2016, 16, 4849–4866. [Google Scholar] [CrossRef] [Green Version]
Sample Type | L/M | L/(M + G) | Data Source | |
---|---|---|---|---|
Lignite | Jsp11 | 31 | 31 | Fabbri et al. (2009) [46] |
S6s | 92 | 92 | Fabbri et al. (2009) [46] | |
Lst6 | 40 | 40 | Fabbri et al. (2009) [46] | |
Average | 54 | 54 | ||
Hardwoods | 22 | 17.6 | Nolte et al. (2001) [73], Fine et al. (2002) [74] | |
13–24 | Fine et al. (2004) [59] | |||
14.5–14.6 | 8.5–9.9 | Schmidl et al. (2008) [53] | ||
13.8–32.3 | 4.5–14 | Engling et al. (2006) [75] | ||
3.3–8.4 | 1.5–2.1 | Oros and Simoneit (2001b) [76] | ||
Softwoods (conifer) | 4 | 3.6 | Nolte et al. (2001) [73], Fine et al. (2002) [74] | |
3.9–6.7 | Fine et al. (2004) [59] | |||
2.6–5.0 | 2.4–5.0 | Engling et al. (2006) [75] | ||
3.6–3.9 | 1.8–2.8 | Schmidl et al. (2008) [53] | ||
0.6–13.8 | 0.4–6.1 | Oros and Simoneit (2001a) [77] | ||
Charred pine wood | 2.5 | 2.0 | Otto et al. (2006) [78] | |
Charred pine cone | 0.3 | 0.2 | Otto et al. (2006) [78] | |
Forest fire smoke | 4.8–5.6 | 3.2–3.9 | Ward et al. (2006) [79] | |
Grasses | 2.0–33.3 | 1.7–9.5 | Oros et al. (2006) [80] | |
Green hardwood litter | 4 | 2 | Medeiros and Simoneit (2008) [81] | |
Green softwood litter | 3.6 | 2.1 | Medeiros and Simoneit (2008) [81] | |
Atmospheric aerosols | 3.5–75 | 3.2–14 | Pashynska et al. (2002) [82], Yttri et al. (2005) [82], Ward et al. (2006) [79], Simoneit et al. (2004b,c) [83,84], Medeiros et al. (2006) [85], Zdra’hal et al. (2002) [86], Sandradevi et al. (2008) [87] |
Compounds | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
---|---|---|---|---|---|---|
Anthracene (Ant) | 0.03 | 1.02 | 0.16 | 0.52 | 0.34 | 0.00 |
Retene (Ret) | 1.27 | 2.02 | 0.00 | 0.85 | 0.32 | 0.30 |
Fluoranthene (Flut) | 0.80 | 0.18 | 10.61 | 4.80 | 0.61 | 0.00 |
Pyrene (Py) | 0.75 | 3.03 | 8.89 | 1.51 | 3.94 | 0.23 |
Chrysene (Chr) | 0.37 | 1.30 | 2.90 | 1.77 | 3.35 | 0.95 |
Benzo[a]anthracene (BaA) | 0.66 | 0.31 | 3.42 | 2.86 | 4.17 | 1.39 |
Benzo[k + b]fluoranthene (B[k + b]F) | 0.54 | 1.82 | 2.11 | 1.33 | 3.88 | 1.60 |
Benzo[a]pyrene (BaP) | 0.21 | 1.63 | 2.77 | 0.88 | 3.64 | 1.29 |
Benzo[e]pyrene (BeP) | 0.42 | 1.21 | 1.94 | 1.44 | 3.07 | 0.98 |
Perylene (Prl) | 0.92 | 1.29 | 0.23 | 1.56 | 0.00 | 0.00 |
Dibenzo[a,h]anthracene (DBahA) | 0.05 | 0.80 | 0.00 | 1.17 | 0.61 | 0.01 |
Indeno[1,2,3-cd]pyrene (IP) | 0.32 | 1.53 | 0.62 | 1.05 | 2.40 | 1.36 |
Benzo[ghi]perylene (BghiP) | 0.19 | 1.78 | 1.11 | 2.80 | 2.84 | 1.83 |
Syringaldehyde | 18.84 | 1.44 | 0.00 | 0.00 | 0.00 | 6.53 |
Acetosyringone | 52.54 | 1.46 | 0.00 | 0.00 | 0.00 | 29.92 |
Propionylsyringol | 9.87 | 1.19 | 0.00 | 0.57 | 0.00 | 6.73 |
Sinapylaldehyde | 21.98 | 8.34 | 0.00 | 0.00 | 0.00 | 1.35 |
Vanillin | 0.19 | 1.57 | 0.00 | 0.00 | 0.00 | 1.28 |
Acetovanillone | 1.13 | 1.72 | 0.00 | 0.00 | 0.00 | 0.35 |
Guaiacylacetone | 5.27 | 5.73 | 0.00 | 0.00 | 0.00 | 1.66 |
Coniferylaldehyde | 1.15 | 2.65 | 0.00 | 0.00 | 0.05 | 0.66 |
Levoglucosan | 34.80 | 51.41 | 0.00 | 0.00 | 0.00 | 3.76 |
Dehydroabietic acid | 6.29 | 29.65 | 0.00 | 0.00 | 0.00 | 0.93 |
Biomass burning types | Hardwood | Softwood | Light oil | Traffic | Road dust | Others |
Contribution (%) | 43.1 | 5.8 | 13.4 | 7.2 | 8.2 | 21.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Ge, P.; Chen, M.; Tang, J.; Cao, M.; Cui, Y.; Hu, K.; Nie, D. Tracers from Biomass Burning Emissions and Identification of Biomass Burning. Atmosphere 2021, 12, 1401. https://doi.org/10.3390/atmos12111401
Li W, Ge P, Chen M, Tang J, Cao M, Cui Y, Hu K, Nie D. Tracers from Biomass Burning Emissions and Identification of Biomass Burning. Atmosphere. 2021; 12(11):1401. https://doi.org/10.3390/atmos12111401
Chicago/Turabian StyleLi, Wenjing, Pengxiang Ge, Mindong Chen, Jiajie Tang, Maoyu Cao, Yan Cui, Kun Hu, and Dongyang Nie. 2021. "Tracers from Biomass Burning Emissions and Identification of Biomass Burning" Atmosphere 12, no. 11: 1401. https://doi.org/10.3390/atmos12111401
APA StyleLi, W., Ge, P., Chen, M., Tang, J., Cao, M., Cui, Y., Hu, K., & Nie, D. (2021). Tracers from Biomass Burning Emissions and Identification of Biomass Burning. Atmosphere, 12(11), 1401. https://doi.org/10.3390/atmos12111401