Satellite-Observed Effects from Ozone Pollution and Climate Change on Growing-Season Vegetation Activity over China during 1982–2020
Abstract
:1. Introduction
2. Methodologies
2.1. Datasets
2.1.1. Normalized Difference Vegetation Index (NDVI)
2.1.2. Ozone Mass Mixing Ratio (OMR) Data
2.1.3. Climate Elements Data
2.2. Methods
2.2.1. Determination of Ozone Pollution Zones
2.2.2. Principal Component Analysis (PCA)
2.2.3. Methods for Quantitatively Assessing the Effects of Ozone Pollution and Climate Change on Vegetation Change
3. Results
3.1. Spatiotemporal Characteristics of Ozone at 1000 hPa during 1982–2020
3.2. Spatiotemporal Characteristics of NDVI during 1982–2020
3.3. Relationships between Vegetation Activity and Ozone and Climate Elements
3.4. Effect of Ozone Pollution on Vegetation Activity
3.5. Effect of Climate Changes on Vegetation Activity
4. Discussion
4.1. The Evaluated Effects from Ozone Pollution and Climate Change on Vegetation Growth
4.2. Limitations and Future Perspectives
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.B.; Jiao, K.W.; Wu, S.H. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Marquer, L.; Gaillard, M.J.; Sugita, S.; Poska, A.; Trondman, A.K.; Mazier, F.; Nielsen, A.B.; Fyfe, R.M.; Jonsson, A.M.; Smith, B.; et al. Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quat. Sci. Rev. 2017, 171, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Scheiter, S.; Higgins, S.I. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach. Glob. Chang. Biol. 2009, 15, 2224–2246. [Google Scholar] [CrossRef]
- Scheiter, S.; Kumar, D.; Corlett, R.T.; Gaillard, C.; Langan, L.; Lapuz, R.S.; Martens, C.; Pfeiffer, M.; Tomlinson, K.W. Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Glob. Chang. Biol. 2020, 26, 5106–5124. [Google Scholar] [CrossRef] [PubMed]
- Svenning, J.C.; Sandel, B. Disequilibrium Vegetation Dynamics Under Future Climate Change. Am. J. Bot. 2013, 100, 1266–1286. [Google Scholar] [CrossRef]
- Chen, X.W.; Li, B.L. Global scale assessment of the relative contribution of climate and non-climate factors on annual vegetation change. G Eofizika 2010, 27, 37–43. [Google Scholar]
- Matyssek, R.; Kozovits, A.R.; Wieser, G. Vegetation Response to Climate Change and Air Pollution—Unifying Research and Evidence from Northern and Southern Hemisphere. Environ. Pollut. 2015, 196, 480–482. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.S.; Huang, M.; Wang, R.; Wang, S.Q.; Liu, X.D.; Xie, X.N.; Liu, Z.J.; Gong, H.; Hao, M. Global NDVI Patterns in Response to Atmospheric Water Vapor Anomalies over the Indo-Pacific Warm Pool during April-June. J. Clim. 2019, 32, 1167–1180. [Google Scholar] [CrossRef]
- Gong, C.; Liao, H.; Yue, X.; Ma, Y.M.; Lei, Y.D. Impacts of Ozone-Vegetation Interactions on Ozone Pollution Episodes in North China and the Yangtze River Delta. Geophys. Res. Lett. 2021, 48, e2021GL093814. [Google Scholar] [CrossRef]
- Lin, M.Y.; Horowitz, L.W.; Xie, Y.Y.; Paulot, F.; Malyshev, S.; Shevliakova, E.; Finco, A.; Gerosa, G.; Kubistin, D.; Pilegaard, K. Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nat. Clim. Chang. 2020, 10, 444–451. [Google Scholar] [CrossRef]
- Matyssek, R.; Wieser, G.; Calfapietra, C.; de Vries, W.; Dizengremel, P.; Ernst, D.; Jolivet, Y.; Mikkelsen, T.N.; Mohren, G.M.J.; Le Thiec, D.; et al. Forests under climate change and air pollution: Gaps in understanding and future directions for research. Environ. Pollut. 2012, 160, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Sitch, S.; Cox, P.M.; Collins, W.J.; Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 2007, 448, 791–794. [Google Scholar] [CrossRef]
- Paoletti, E.; de Vries, W.; Mikkelsen, T.N.; Ibrom, A.; Larsen, K.S.; Tuovinen, J.P.; Serengil, Y.; Yurtseven, I.; Wieser, G.; Matyssek, R. Key indicators of air pollution and climate change impacts at forest supersites. In Developments in Environmental Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 13, pp. 497–518. [Google Scholar]
- Gustafson, E.J.; Miranda, B.R.; Sturtevant, B.R. How do forest landscapes respond to elevated CO2 and ozone? Scaling Aspen-FACE plot-scale experimental results. Ecosphere 2020, 11, e03162. [Google Scholar] [CrossRef]
- Kobayashi, K. FACE-ing the challenges of increasing surface ozone concentration in Asia Foreword. J. Agric. Meteorol. 2015, 71, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, E.; Hoshika, Y.; Arab, L.; Martini, S.; Cotrozzi, L.; Weber, D.; Ache, P.; Neri, L.; Baraldi, R.; Pellegrini, E.; et al. Date palm responses to a chronic, realistic ozone exposure in a FACE experiment. Environ. Res. 2021, 195, 110868. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.X.; Zhu, J.G.; Wang, Y.L.; Yang, L.X. Effects of Ozone Stress on Rice Growth and Yield Formation under Different Planting Densities—A Face Study. Int. J. Agric. Biol. 2018, 20, 2599–2605. [Google Scholar]
- Dadvand, P.; Rivas, I.; Basagaña, X.; Alvarez-Pedrerol, M.; Su, J.; De Castro Pascual, M.; Amato, F.; Jerret, M.; Querol, X.; Sunyer, J.; et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 2015, 523, 59–63. [Google Scholar] [CrossRef]
- Meng, M.; Ni, J.; Zong, M.J. Impacts of changes in climate variability on regional vegetation in China: NDVI-based analysis from 1982 to 2000. Ecol. Res. 2011, 26, 421–428. [Google Scholar] [CrossRef]
- Piedallu, C.; Cheret, V.; Denux, J.P.; Perez, V.; Azcona, J.S.; Seynave, I.; Gegout, J.C. Soil and climate differently impact NDVI patterns according to the season and the stand type. Sci. Total Environ. 2019, 651, 2874–2885. [Google Scholar] [CrossRef]
- Revadekar, J.V.; Tiwari, Y.K.; Kumar, K.R. Impact of climate variability on NDVI over the Indian region during 1981–2010. Int. J. Remote Sens. 2012, 33, 7132–7150. [Google Scholar] [CrossRef]
- Savastru, D.M.; Zoran, M.A.; Savastru, R.S. Satellite remote sensing detection of forest vegetation land cover changes and their potential drivers. In Remote Sensing for Agriculture, Ecosystems, and Hydrology Xxi; Neale, C.M.U., Maltese, A., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11149. [Google Scholar]
- Wu, L.; Ma, X.; Dou, X.; Zhu, J.; Zhao, C. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Sci. Total Environ. 2021, 796, 149055. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal Avhrr Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Syms, C. Principal Components Analysis. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Oxford, UK, 2008; pp. 2940–2949. [Google Scholar]
- Kim, J.-S.; Kug, J.-S.; Jeong, S.-J.; Huntzinger, D.N.; Michalak, A.M.; Schwalm, C.R.; Wei, Y.; Schaefer, K. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 2017, 10, 572–576. [Google Scholar] [CrossRef]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Chang. Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Unger, N.; Harper, K.; Xia, X.G.; Liao, H.; Zhu, T.; Xiao, J.F.; Feng, Z.Z.; Li, J. Ozone and haze pollution weakens net primary productivity in China. Atmos. Chem. Phys. 2017, 17, 6073–6089. [Google Scholar] [CrossRef] [Green Version]
- Deryng, D.; Elliott, J.; Folberth, C.; Müller, C.; Pugh, T.A.M.; Boote, K.J.; Conway, D.; Ruane, A.C.; Gerten, D.; Jones, J.W.; et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Chang. 2016, 6, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.; Martin, M.; Heald, C. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 2014, 4, 817–821. [Google Scholar] [CrossRef] [Green Version]
Regions | Value | Grades | Thresholds |
---|---|---|---|
R1 | OMR0–650 | Good | ≤OMR0 + OMR0 × 55% |
R2 | 650–700 | Moderate | ≤OMR0 + OMR0 × 67% |
R3 | 700–750 | Unhealthy | ≤OMR0 + OMR0 × 79% |
R4 | 750–800 | Very Unhealthy | ≤OMR0 + OMR0 × 90% |
R5 | >800 | Hazardous | ≥OMR0 + OMR0 × 90% |
Regions | OMR | T | P | SSR |
---|---|---|---|---|
China | 0.54 * | 0.68 * | 0.19 | 0.67 * |
R1 | 0.37 | 0.35 | 0.19 | 0.59 * |
R2 | 0.44 * | 0.48 * | −0.03 | 0.68 * |
R3 | 0.44 * | 0.52 * | −0.04 | 0.63 * |
R4 | 0.49 * | 0.71 * | 0.04 | 0.56 * |
R5 | 0.34 | 0.43 * | 0.25 | 0.25 |
Regions | Forest | Shrub | Grass | Crop | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
R1 | 11.2 | 6.7 | 10.6 | 6.5 | 11.6 | 6.4 | 9.4 | 6.2 | 10.8 | 6.6 |
R2 | 12.3 | 6.7 | 12.8 | 6.8 | 13.4 | 6.5 | 12.3 | 6.8 | 12.6 | 6.7 |
R3 | 10.9 | 7.0 | 9.0 | 6.8 | 12.6 | 6.8 | 10.0 | 6.9 | 11.0 | 7.0 |
R4 | 10.19 | 6.5 | 11.7 | 6.4 | 13.9 | 6.4 | 11.6 | 6.8 | 12.4 | 6.7 |
R5 | 16.29 | 5.29 | 15.7 | 5.6 | 15.4 | 5.7 | 15.0 | 6.1 | 15.8 | 5.5 |
Regions | Forest | Shrub | Grass | Crop | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
R1 | 22.9 | 19.5 | 21.5 | 18.3 | 26.0 | 20.5 | 19.7 | 16.9 | 22.3 | 19.0 |
R2 | 23.5 | 19.7 | 23.6 | 19.8 | 30.80 | 21.9 | 23.9 | 19.4 | 24.9 | 20.30 |
R3 | 27.0 | 20.8 | 23.9 | 19.8 | 28.0 | 20.9 | 25.4 | 21.3 | 26.6 | 21.00 |
R4 | 24.2 | 19.6 | 30.0 | 20.4 | 29.40 | 21.6 | 26.7 | 21.3 | 27.5 | 21.2 |
R5 | 32.7 | 21.7 | 31.7 | 21.7 | 31.90 | 21.8 | 31.1 | 21.4 | 32.3 | 21.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z. Satellite-Observed Effects from Ozone Pollution and Climate Change on Growing-Season Vegetation Activity over China during 1982–2020. Atmosphere 2021, 12, 1390. https://doi.org/10.3390/atmos12111390
Wang Z. Satellite-Observed Effects from Ozone Pollution and Climate Change on Growing-Season Vegetation Activity over China during 1982–2020. Atmosphere. 2021; 12(11):1390. https://doi.org/10.3390/atmos12111390
Chicago/Turabian StyleWang, Zhaosheng. 2021. "Satellite-Observed Effects from Ozone Pollution and Climate Change on Growing-Season Vegetation Activity over China during 1982–2020" Atmosphere 12, no. 11: 1390. https://doi.org/10.3390/atmos12111390
APA StyleWang, Z. (2021). Satellite-Observed Effects from Ozone Pollution and Climate Change on Growing-Season Vegetation Activity over China during 1982–2020. Atmosphere, 12(11), 1390. https://doi.org/10.3390/atmos12111390