Applications and Limitations of Quantifying Speciated and Source-Apportioned VOCs with Metal Oxide Sensors
Abstract
:1. Introduction
1.1. The Need for Low-Cost Speciated Hydrocarbon Data
1.2. VOC Quantification Using Low-Cost Sensors
1.3. Application to Oil and Gas Data
2. Methods
2.1. Instrumentation
2.2. Artificial Neural Networks
2.3. Positive Matrix Factorization
3. Results
3.1. Calibration, Best-Fitting ANN Parameters
3.2. Calibration, PMF Analysis to Group VOCs
3.3. Calibration for Individual VOCs, Benzene and Toluene
3.4. Calibration of Grouped VOCs Using PMF
3.5. Calibration of Formaldehyde
3.6. Application to Field Data
4. Discussion
4.1. Comparison of Two Locations
4.2. Broader Implications
4.3. Limitations and Lessons Learned
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collier-Oxandale, A.; Wong, N.; Navarro, S.; Johnston, J.; Hannigan, M. Using gas-phase air quality sensors to disentangle potential sources in a Los Angeles neighborhood. Atmos. Environ. 2020, 233, 117519. [Google Scholar] [CrossRef]
- Okorn, K.; Jimenez, A.; Collier-Oxandale, A.; Johnston, J.; Hannigan, M. Characterizing methane and total non-methane hydrocarbon levels in Los Angeles communities with oil and gas facilities using air quality monitors. Sci. Total Environ. 2021. [Google Scholar] [CrossRef] [PubMed]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef] [Green Version]
- Vikram, S.; Collier-Oxandale, A.; Ostertag, M.H.; Menarini, M.; Chermak, C.; Dasgupta, S.; Rosing, T.; Hannigan, M.; Griswold, W.G. Evaluating and improving the reliability of gas-phase sensor system calibrations across new locations for ambient measurements and personal exposure monitoring. Atmos. Meas. Tech. 2019, 12, 4211–4239. [Google Scholar] [CrossRef] [Green Version]
- Adgate, J.L.; Goldstein, B.D.; McKenzie, L.M. Potential public health hazards, exposures and health effects from unconventional natural gas development. Environ. Sci. Technol. 2014, 48, 8307–8320. [Google Scholar] [CrossRef]
- Glass, D.; Gray, C.; Adams, G.; Manuell, R.; Bisby, J. Validation of exposure estimation for benzene in the Australian petroleum industry. Toxicol. Ind. Health 2001, 17, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fan, Z.; Zhu, X.; Jung, K.H.; Ohman-Strickland, P.; Weisel, C.P.; Lioy, P.J. Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a “hot spot” in Camden, New Jersey. Atmos. Environ. 2012, 57, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, R.; Lin, Q.; Ma, S.; Li, G.; Yu, Y.; Zhang, C.; An, T. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. Chemosphere 2021, 275, 130022. [Google Scholar] [CrossRef] [PubMed]
- Aklilu, Y.; Cho, S.; Zhang, Q.; Taylor, E. Source apportionment of volatile organic compounds measured near a cold heavy oil production area. Atmos. Res. 2018, 206, 75–86. [Google Scholar] [CrossRef]
- Hildenbrand, Z.L.; Mach, P.M.; McBride, E.M.; Dorreyatim, M.N.; Taylor, J.T.; Carlton, D.D.; Meik, J.M.; Fontenot, B.E.; Wright, K.C.; Schug, K.A.; et al. Point source attribution of ambient contamination events near unconventional oil and gas development. Sci. Total. Environ. 2016, 573, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.E.; Dominutti, P.A.; Allen, G.; Andrews, S.J.; Bateson, P.; Bauguitte, S.j.-B.; Burton, R.R.; Colfescu, I.; France, J.; Hopkins, J.R.; et al. Speciation of VOC emissions related to offshore North Sea oil and gas production. Atmos. Chem. Phys. 2021, 21, 3741–3762. [Google Scholar] [CrossRef]
- Maka, P.; Liggio, J.; Leithead, A.; Wentzell, J.; Stroud, C.; Soares, J.; Akingunola, A.; Zhang, J.; Moran, M.D.; Li, S.M. Source Attribution of VOCs in the Canadian Oil Sands using Hierarchical Clustering. In AGU Fall Meeting Abstracts; American Geophysical Union Fall Meeting: San Francisco, CA, USA, 2019. [Google Scholar]
- Gao, H.O.; Niemeier, D.A. The impact of rush hour traffic and mix on the ozone weekend effect in southern California. Transport. Rsrch. Part D Transp. Environ. 2007, 12, 83–98. [Google Scholar] [CrossRef]
- Honeycutt, W.T.; Ley, M.T.; Materer, N.F. Precision and Limits of Detection for Selected Commercially Available, Low-Cost Carbon Dioxide and Methane Gas Sensors. Sensors 2018, 19, 3157. [Google Scholar] [CrossRef] [Green Version]
- van den Broek, J.; Cerrejon, D.K.; Pratsinis, S.E.; Güntner, A.T. Selective formaldehyde detection at ppb in indoor air with a portable sensor. J. Hazard. Mater. 2020, 399, 123052. [Google Scholar] [CrossRef]
- Lin, C.F.; Zan, H.W.; Lu, C.J.; Meng, H.F.; Soppera, O. A low-cost miniaturized colorimetric sensor with vertically-stacked semi-transparent finger-type organic photo detector for formaldehyde sensing. Org. Electron. 2019, 73, 115–121. [Google Scholar] [CrossRef]
- Chi, C.Y.; Chen, H.I.; Chen, W.C.; Chang, C.H.; Liu, W.C. Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor. Sens. Actuators B Chem. 2018, 255, 3017–3024. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- University of Florida Health: Center for Environmental & Human Toxicology, College of Veterinary Medicine, Analytical Services Pricing. Available online: https://toxicology.vetmed.ufl.edu/core-laboratories/analytical-services-pricing/ (accessed on 15 July 2021).
- U.S. Department of Defense. Environmental Security Technology Certification Program, ESTCP Cost and Performance Report; U.S. Department of Defense: Arlington, VA, USA, 2015.
- Collier-Oxandale, A.; Thorson, J.; Halliday, H.; Milford, J.; Hannigan, M. Understanding the ability of low-cost MOx sensors to quantify ambient VOCs. Atmos. Meas. Tech. Discuss. 2019, 12, 1441–1460. [Google Scholar] [CrossRef] [Green Version]
- Sadighi, K.; Coffey, E.; Polidori, A.; Feenstra, B.; Lv, Q.; Henze, D.; Hannigan, M. Intra-urban spatial variability of surface ozone in Riverside, CA: Viability and validation of low-cost sensors. Atmos. Meas. Tech. 2018, 11, 1777–1792. [Google Scholar] [CrossRef] [Green Version]
- Collier-Oxandale, A.; Casey, J.G.; Piedrahita, R.; Ortega, J.; Halliday, H.; Johnston, J.; Hannigan, M. Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments. Atmos. Meas. Tech. 2018, 11, 3569–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheadle, L.; Deanes, L.; Sadighi, K.; Casey, J.G.; Collier-Oxandale, A.; Hannigan, M. Quantifying Neighborhood-Scale Spatial Variations of Ozone at Open Space and Urban Sites in Boulder, Colorado Using Low-Cost Sensor Technology. Sensors 2017, 17, 2072. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.G.; Hannigan, M. Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: Across a county line and across Colorado. Atmos. Meas. Tech. 2018, 11, 6351–6378. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.; Collier-Oxandale, A.; Hannigan, M. Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors. Sens. Actuators B Chem. 2019, 283, 504–514. [Google Scholar] [CrossRef]
- Huang, J.R.; Gu, C.P.; Meng, F.L.; Li, M.Q.; Liu, J.H. Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network. Smart Mater. Struct. 2007, 16, 701. [Google Scholar] [CrossRef]
- Sobanski, T.; Szczurek, A.; Licznerski, B.W. Application of sensor array and artificial neural network for discrimination and qualification of benzene and ethylbenzene. In Proceedings of the 24th International Spring Seminar on Electronics Technology, Concurrent Engineering in Electronic Packaging, Calimanesti-Caciulata, Romania, 5–9 May 2001; pp. 150–153. [Google Scholar]
- Chen, Z.; Zheng, Y.; Chen, K.; Li, H.; Jian, J. Concentration Estimator of Mixed VOC Gases Using Sensor Array with Neural Networks and Decision Tree Learning. IEEE Sens. J. 2017, 17, 1884–1892. [Google Scholar] [CrossRef]
- Colorado Oil & Gas Conservation Commission: Interactive Map. Available online: https://cogcc.state.co.us/maps.html#/gisonline (accessed on 1 July 2021).
- Halliday, H.S.; Thompson, A.M.; Wisthaler, A.; Blake, D.R.; Hornbrook, R.S.; Mikoviny, T.; Müller, M.; Eichler, P.; Apel, E.C.; Hills, A.J. Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014. JGR Atmospheres 2016, 121, 11055–11074. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.; Okorn, K.; van Horne, Y.O.; Jimenez, A. Changes in neighborhood air quality after idling of an urban oil production site. Environ. Sci. Process. Impacts 2021, 23, 967–980. [Google Scholar] [CrossRef]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manage. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Figaro, Product Information: TGS 2600–for the Detection of Air Contaminants. 2021. Available online: https://www.figarosensor.com/product/docs/tgs2600_product%20information%28fusa%29_rev05.pdf (accessed on 21 October 2021).
- Figaro, Product Information: TGS 2602–for the Detection of Air Contaminants. 2021. Available online: https://www.figarosensor.com/product/docs/tgs2602_product%20information%28fusa%29_rev05.pdf (accessed on 21 October 2021).
- Okorn, K.; Hannigan, M. Improving Air Pollutant Metal Oxide Sensor Quantification Practices through: An Exploration of Sensor Signal Normalization, Multi-Sensor and Universal Calibration Model Generation, and Physical Factors Such as Co-Location Duration and Sensor Age. Atmosphere 2021, 12, 645. [Google Scholar] [CrossRef]
- Bono, R.; Bugliosi, E.H.; Schilirò, T.; Gilli, G. The Lagrange Street story: The prevention of aromatics air pollution during the last nine years in a European city. Atmos. Environ. 2001, 35, 1. [Google Scholar] [CrossRef]
- Gross, S.A.; Avens, H.J.; Banducci, A.M.; Sahmel, J.; Panko, J.M.; Tvermoes, B.E. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. J. Air Waste Manag. Assoc. 2013, 63, 4. [Google Scholar] [CrossRef] [Green Version]
- Altemose, B.; Gong, J.; Zhu, T.; Hu, M.; Zhang, L.; Cheng, H.; Zhang, L.; Tong, J.; Kipen, H.M.; Ohman-Strickland, P.; et al. Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics. Atmos. Environ. 2015, 109, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Aasberg-Petersen, K.; Nielsen, C.S.; Dybkjær, I.; Perregaard, J. Large Scale Methanol Production from Natural Gas; ResearchGate, Full Text; Haldor Topsøe: Lyngby, Denmark, 2008. [Google Scholar]
- NOAA Earth System Research Laboratory: Chemical Sciences Division, FRAPPÉ/DISCOVER-AQ 2014. Available online: https://csl.noaa.gov/groups/csl7/measurements/2014frappe/ (accessed on 1 July 2021).
- Correa, S.M.; Arbilla, G.; Marques, M.R.C.; Oliveira, K.M.P.G. The impact of BTEX emissions from gas stations into the atmosphere. Atmos. Pollut. Res. 2012, 3, 163–169. [Google Scholar] [CrossRef] [Green Version]
- AMohamed, A.E.-S.; Panigrahy, S.; Sahu, A.B.; Bourque, G.; Curran, H.J. An experimental and kinetic modeling study of the auto-ignition of natural gas blends containing C1–C7 alkanes. Proc. Combust. Inst. 2021, 38, 1. [Google Scholar]
- Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene Emission from Plants: Why and How. Ann. Bot. 2008, 101, 5–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieber, R.J.; Rhines, M.F.; Willey, J.D.; Avery, G.B. Rainwater formaldehyde: Concentration, deposition and photochemical formation. Atmos. Environ. 1999, 33, 22. [Google Scholar] [CrossRef]
- Songur, A.; Ozen, O.A.; Sarsilmaz, M. The Toxic Effects of Formaldehyde on the Nervous System. Rev. Environ. Contam. Toxicol. 2010, 203, 105–118. [Google Scholar]
- Verma, D.K.; Johnson, D.M.; McLean, J.D. Benzene and Total Hydrocarbon Exposures in the Upstream Petroleum Oil and Gas Industry. Am. Ind. Hyg. Assoc. 2000, 61, 2. [Google Scholar]
- Thompson, C.R.; Hueber, J.; Helmig, D. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado. Elem. Sci. Anth. 2014, 3, 000035. [Google Scholar] [CrossRef] [Green Version]
- Gilman, J.B.; Lerner, B.M.; Kuster, W.C.; de Gouw, J. Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado. Environ. Sci. Technol. 2013, 47, 1297–1305. [Google Scholar] [CrossRef]
- Peischl, J.; Ryerson, T.; Brioude, J.; Aikin, K.; Andrews, A.; Atlas, E.; Blake, D.; Daube, B.; de Gouw, J.; Dlugokencky, E. Quantifying sources of methane using light alkanes in the Los Angeles basin, California. J. Geophys. Res. Atmos. 2013, 118, 4974–4990. [Google Scholar] [CrossRef] [Green Version]
- Schindler, T.L. Never at Rest: The air over Los Angeles. 2013. Available online: https://svs.gsfc.nasa.gov/4077 (accessed on 11 June 2021).
- Irie, H.; Yonekawa, D.; Damiani, A.; Hoque, H.M.S.; Sudo, K.; Itahashi, S. Utilizing Continuous Multi-Component MAX-DOAS Observations for the Near-Surface Ozone Sensitivity Diagnosis at Chiba and Tsukuba, Japan for 2013–2019. In AGU Fall Meeting Abstracts; AGU Fall Meeting: San Francisco, CA, USA, 2020. [Google Scholar]
- Vohra, K.; Marais, E.; Lu, G.; Bloss, W.; Zhu, L.; Eskes, H.; De Smedt, I. Assessing Surface Ozone-NOX-VOC Sensitivity in Major Indian Cities Using High Resolution TROPOMI Observations; AGU Fall Meeting: San Francisco, CA, USA, 2020. [Google Scholar]
- Rasmussen, S.G.; Ogburn, E.L.; McCormack, M.; Casey, J.A.; Bandeen-Roche, K.; Mercer, D.G.; Schwartz, B.S. Association between unconventional natural gas development in the Marcellus Shale and asthma exacerbations. JAMA Intern. Med. 2016, 176, 1334–1343. [Google Scholar] [CrossRef]
- Delfino, R.J.; Jr, H.G.; Linn, W.S.; Pellizzari, E.D.; Hu, Y. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environ. Health Perspect. 2003, 111, 647–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, J.E.; Lim, E.; Roh, H. Impact of upstream oil extraction and environmental public health: A review of the evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Yermukhanova, L.; Zhexenova, A.; Izimbergenova, G.; Turebaev, M.; Bekbauova, A.; Zumabekov, E. Immunodeficiency states in persons residing in the oil-producing regions of Kazakhstan. Res. J. Med. Sci. 2017, 11, 16–18. [Google Scholar]
- Brosselin, P.; Rudant, J.; Orsi, L.; Leverger, G.; Baruchel, A.; Bertrand, Y.; Nelken, B.; Robert, A.; Michel, G.; Margueritte, G.; et al. Acute childhood leukaemia and residence next to petrol stations and automotive repair garages: The ESCALE study (SFCE). Occup. Environ. Med. 2009, 66, 598–606. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.A.; Reddy, G.K. Health Risks Associated with Benzene Exposure in Children: A Systematic Review. Glob. Pediatr. Health 2018, 5, 2333794X18789275. [Google Scholar] [CrossRef]
- Ferrero, L.; Sangiorgi, G.; Perrone, M.G.; Rizzi, C.; Cataldi, M.; Markuszewski, P.; Pakszys, P.; Makuch, P.; Petelski, T.; Becagli, S.; et al. Chemical Composition of Aerosol over the Arctic Ocean from Summer ARctic EXpedition (AREX) 2011–2012 Cruises: Ions, Amines, Elemental Carbon, Organic Matter, Polycyclic Aromatic Hydrocarbons, n-Alkanes, Metals, and Rare Earth Elements. Atmosphere 2019, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Evtyugina, M.; Calvo, A.I.; Nunes, T.; Alves, C.; Fernandes, A.P.; Tarelho, L.; Vicente, A.; Pio, C. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal. Atmos. Environ. 2013, 64, 339–348. [Google Scholar] [CrossRef]
Dataset | Species | Electrical Input | Sensor Inputs | Hidden Layers | Hidden Layer Size | Backpropagation Method | Epochs | Performance Goal | µ |
---|---|---|---|---|---|---|---|---|---|
FRAPPE | Oil and Gas | Voltage | t, h, VOC1, VOC2, Te, VOC2/(VOC1 + VOC2) | 4 | 5 | Bayesian Regularization | 1000 | 1 × 10−10 | 0.5 |
Combustion | Voltage | t, h, VOC1, VOC2, Te, CO2, VOC1/(VOC1 + VOC2) | 1 | 10 | Levenberg-Marquardt | 100 | 1 × 10−10 | 0.01 | |
Natural Gas | Voltage | t, h, VOC1, VOC2, Te, CO2, VOC1/VOC2, ln(t)×h | 1 | 10 | Levenberg-Marquardt | 100 | 1.00 × 10−10 | 0.1 | |
Benzene | Voltage | t, h, VOC1, VOC2, Te, CO2 | 1 | 10 | Levenberg-Marquardt | 100 | 1 × 10−10 | 0.005 | |
Toluene | Voltage | t, h, VOC1, VOC2, Te, VOC1/VOC2, VOC2 t | 4 | 7 | Bayesian Regularization | 1000 | 1 × 10−10 | 0.5 | |
HCHO | Voltage | t, h, VOC1, VOC2, Te, CO2, VOC1/(VOC1 + VOC2) | 1 | 10 | Levenberg-Marquardt | 100 | 1 × 10−10 | 0.005 | |
Greeley | Oil and Gas | Voltage | t, h, VOC1, VOC2, Te, CO2, VOC2/(VOC1 + VOC2) | 1 | 10 | Levenberg-Marquardt | 100 | 1 × 10−10 | 0.05 |
Natural Gas | Voltage | t, h, VOC1, VOC2, Te, CO2, VOC1/VOC2 | 1 | 5 | Bayesian Regularization | 1000 | 0.01 | 0.5 | |
Biogenic | R/R0 | t, h, VOC1, VOC2, Te, VOC2/(VOC1 + VOC2), VOC1 t | 1 | 5 | Bayesian Regularization | 1000 | 0.01 | 0.5 | |
Benzene | Voltage | t, h, VOC1, VOC2, Te, CO2, VOC1/VOC2 | 1 | 10 | Levenberg-Marquardt | 100 | 1 × 10−10 | 0.005 | |
Toluene | Voltage | t, h, VOC1, VOC2, Te, VOC1/VOC2, VOC2 t | 1 | 10 | Levenberg-Marquardt | 100 | 1 × 10−10 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okorn, K.; Hannigan, M. Applications and Limitations of Quantifying Speciated and Source-Apportioned VOCs with Metal Oxide Sensors. Atmosphere 2021, 12, 1383. https://doi.org/10.3390/atmos12111383
Okorn K, Hannigan M. Applications and Limitations of Quantifying Speciated and Source-Apportioned VOCs with Metal Oxide Sensors. Atmosphere. 2021; 12(11):1383. https://doi.org/10.3390/atmos12111383
Chicago/Turabian StyleOkorn, Kristen, and Michael Hannigan. 2021. "Applications and Limitations of Quantifying Speciated and Source-Apportioned VOCs with Metal Oxide Sensors" Atmosphere 12, no. 11: 1383. https://doi.org/10.3390/atmos12111383
APA StyleOkorn, K., & Hannigan, M. (2021). Applications and Limitations of Quantifying Speciated and Source-Apportioned VOCs with Metal Oxide Sensors. Atmosphere, 12(11), 1383. https://doi.org/10.3390/atmos12111383