Quantifying the Contribution of LUCC to Surface Energy Budget: A Case Study of Four Typical Cities in the Yellow River Basin in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Research Method
2.3.1. Land Classification
2.3.2. Calculation of Surface Energy Balance and Warming Effects
2.3.3. Data Processing
3. Results
3.1. Changes in Land Surface Temperature
3.2. Surface Albedo Variation
3.3. Changes of Surface Energy Intake
3.3.1. Shortwave Radiation and Longwave Radiation
3.3.2. Changes in Net Radiation
3.4. Analysis of the Change in the Surface Energy Expenditure
3.5. Comparison of Net Radiation and Latent Heat Flux
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, Q.; Zhou, S.; Wang, L.; Zhu, M.; Liu, D.; Tang, W.; Cui, Y.; Lee, J. Exploring on the eco-climatic effects of land use changes in the influence area of the Yellow River Basin from 2000 to 2015. Land 2021, 10, 601. [Google Scholar] [CrossRef]
- Huang, L.; Zhai, J.; Sun, C.; Liu, J.; Ning, J.; Zhao, G. Biogeophysical forcing of land-use changes on local temperatures across different climate regimes in China. J. Climate 2018, 31, 7053–7068. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2018, 646, 930–939. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Su, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Yang, W.; Long, D.; Bai, P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, L.; Zhang, L.; Liu, P.; Qin, S.; Liu, L.; Jing, Z. Quantifying the impacts of land-cover changes on global evapotranspiration based on the continuous remote sensing observations during 1982–2016. J. Hydrol. 2021, 598, 126231. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, K.; Yang, S.; Li, W.; Zhang, Y.; Zhang, B.; Fu, Y.; Liu, X.; Run, Y.; Chubwa, O.G.; et al. Warming effort and energy budget difference of various human land use intensity: Case study of Beijing, China. Land 2020, 9, 280. [Google Scholar] [CrossRef]
- Zheng, L.; Qi, Y.; Qin, Z.; Xu, X.; Dong, J. Assessing albedo dynamics and its environmental controls of grasslands over the Tibetan Plateau. Agr. Forest Meteorol. 2020, 307, 108479. [Google Scholar] [CrossRef]
- Xiao, B.; Bowker, M.A. Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. Sci. Total Environ. 2020, 741, 140425. [Google Scholar] [CrossRef] [PubMed]
- Susca, T. Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs. Environ. Pollut. 2012, 163, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Sieber, P.; Ericsson, N.; Hansson, P.A. Climate impact of surface albedo change in Life Cycle Assessment: Implications of site and time dependence. Environ. Impact Asses. 2019, 77, 191–200. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E. The joint influence of albedo and insulation on roof performance: An observational study. Energy Build. 2015, 93, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Jahangir, M.H.; Arast, M. Remote sensing products for predicting actual evapotranspiration and water stress footprints under different land cover. J. Clean Prod. 2020, 266, 121818. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bahtt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, J.; Hu, Y.; Wang, J.; Kuang, W. Modeling the radiation balance of different urban underlying surfaces. Sci. Bull. 2012, 57, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Odongo, V.O.; Oel, P.R.; Tol, C.; Su, Z. Impact of land use and land cover transitions and climate on evapotranspiration in the Lake Naivasha Basin, Kenya. Sci. Total Environ. 2019, 682, 19–30. [Google Scholar] [CrossRef]
- Bry, K.; Bry, T.; Ojrzyńska, H.; Sayegh, M.A.; Gogowski, A. Variability and role of long-wave radiation fluxes in the formation of net radiation and thermal features of grassy and bare soil active surfaces in Wroclaw. Sci. Total Environ. 2020, 747, 141192. [Google Scholar]
- Golkar, F.; Rossow, W.B.; Sabziparvar, A.A. Refining surface net radiation estimates in arid and semi-arid climates of Iran. Adv. Space Res. 2018, 61, 2932–2941. [Google Scholar] [CrossRef]
- Meng, C.; Huang, C.; Dou, J.; Li, H.; Cheng, C. Key parameters in urban surface radiation budget and energy balance modeling. Urban. Clim. 2021, 39, 100940. [Google Scholar] [CrossRef]
- Umair, M.; Kim, D.; Choi, M. Impacts of land use/land cover on runoff and energy budgets in an East Asia ecosystem from remotely sensed data in a community land model. Sci. Total Environ. 2019, 684, 641–656. [Google Scholar] [CrossRef]
- Ezimand, K.; Azadbakht, M.; Aghighi, H. Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustain. Cities Soc. 2021, 74, 103216. [Google Scholar] [CrossRef]
- Aguilar-Lome, J.; Espinoza-Villar, R.; Espinoza, J.C.; Rojas-Acuña, J.; Willems, B.L.; Leyva-Molina, W.M. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017). Int. J. Appl. Earth Obs. 2019, 77, 119–128. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Abuduwaili, J.; Ge, Y. Quantifying the influences of land surface parameters on LST variations based on GeoDetector model in Syr Darya Basin, Central Asia. J. Arid Environ. 2021, 186, 104415. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Liang, S.; Zhou, T.; Du, X.; Xu, P. Assessing the thermal contributions of urban land cover types. Landsc. Urban. Plan. 2020, 204, 103927. [Google Scholar] [CrossRef]
- Huh, Y.; Lee, J. Enhanced contextual forest fire detection with prediction interval analysis of surface temperature using vegetation amount. Int. J. Remote Sens. 2017, 38, 3375–3393. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Climate 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1011–1015. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Deng, X.; Shi, Q.; Zhang, Q.; Shi, C.; Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. Earth 2015, 79, 2–10. [Google Scholar] [CrossRef]
- Su, Y.; Liu, L.; Wu, J.; Chen, X.; Shang, J.; Ciais, P.; Zhou, G.; Lafortezza, R.; Wang, Y.; Yuan, W.; et al. Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environ. Int. 2019, 132, 105080. [Google Scholar] [CrossRef]
- Jia, A.; Ma, H.; Liang, S.; Wang, D. Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method. Remote Sens. Environ. 2021, 263, 112566. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Rwasoka, D.T.; Gumindoga, W.; Gwenzi, J. Estimation of actual evapotranspiration using the Surface Energy Balance System (SEBS) algorithm in the Upper Manyame catchment in Zimbabwe. Phys. Chem. Earth 2011, 36, 736–746. [Google Scholar] [CrossRef]
- Laipelt, L.; Kayser, B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Webster, E.; Ramp, D.; Kingsford, R.T. Spatial sensitivity of surface energy balance algorithms to meteorological data in a heterogeneous environment. Remote Sens. Environ. 2016, 187, 294–319. [Google Scholar] [CrossRef]
- Azmi, R.; Tekouabou Koumetio, C.S.; Diop, E.B.; Chenal, J. Exploring the relationship between urban form and land surface temperature (LST) in a semi-arid region Case study of Ben Guerir city—Morocco. Environ. Chall. 2021, 5, 100229. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Xu, X.; Tian, J.; He, C. Regional water-energy cycle response to land use/cover change in the agro-pastoral ecotone, Northwest China. J. Hydrol. 2020, 580, 124246. [Google Scholar] [CrossRef]
- Paciolla, N.; Corbari, C.; Hu, G.; Zheng, C.; Menenti, M.; Jia, L.; Mancini, M. Evapotranspiration estimates from an energy-water-balance model calibrated on satellite land surface temperature over the Heihe basin. J. Arid Environ. 2021, 188, 104466. [Google Scholar] [CrossRef]
- Tang, X.; Cui, Y.; Li, N.; Fu, Y.; Liu, X.; Run, Y.; Li, M.; Zhao, G.; Dong, J. Human activities enhance radiation forcing through surface albedo associated with vegetation in Beijing. Remote Sens. 2020, 12, 837. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadegan, M.; Janani, A.S. Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agr. Water Manag. 2019, 217, 383–390. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, J.; Jiao, L.; Lian, X.; Xu, Z.; Zhou, Z. Assessing the comprehensive impacts of different urbanization process on vegetation net primary productivity in Wuhan, China, from 1990 to 2020. Sustain. Cities Soc. 2021, 75, 103295. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Li, Q.; Zhang, T.; Yang, L.; Liu, J. Investigation on the distribution patterns and predictive model of solar radiation in urban street canyons with panorama images. Sustain. Cities Soc. 2021, 75, 13275. [Google Scholar] [CrossRef]
- He, J.; Wu, Y.; Wu, J.; Li, S.; Liu, F.; Zhou, J.; Liao, M. Towards cleaner heating production in rural areas: Identifying optimal regional renewable systems with a case in Ningxia, China. Sustain. Cities Soc. 2021, 75, 103288. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2021, 806, 150646. [Google Scholar] [CrossRef] [PubMed]
Data | Time Resolution | Spatial Resolution | Data Resource |
---|---|---|---|
Albedo | daily | 500 m | MCD43A3 |
Temperature (LST) | daily | 1 km | MOD11A1 |
Latent heat flux (LE) | 8 times daily | 500 m | MOD16A2 |
Emissivity | daily | 1 km | MOD11A1 |
City | Land Use Type | Proportion | Land Use Type | Proportion |
---|---|---|---|---|
Jinan | Cropland | 43% | Cropland to forest | ≈0% |
Grassland | 34% | Cropland to urban | 3% | |
Forest | 9% | Grassland to urban | 5% | |
Water | 1% | Forest to urban | ≈0% | |
Urban | 3% | Water to urban | ≈0% | |
Zhengzhou | Cropland | 68.7% | Grassland to cropland | 0.02% |
Grassland | 8.8% | Grassland to forest | 0.14% | |
Forest | 7.9% | Grassland to urban | 8.8% | |
Water | 0.5% | Cropland to urban | 5.5% | |
Urban | 3.4% | Forest to urban | 0.2% | |
Cropland to forest | 0.2% | Forest to cropland | ≈0% | |
Lanzhou | Cropland | 12.8% | Grassland to cropland | 0.03% |
Grassland | 70% | Grassland to forest | 0.02% | |
Forest | 9% | Cropland to urban | 0.1% | |
Water | 0.1% | Grassland to urban | 1% | |
Urban | 1% | Forest to urban | 0.1% | |
Cropland to grassland | 0.7% | Water to urban | 0.01% | |
Xining | Cropland | 12% | Grassland to cropland | 0.1% |
Grassland | 77% | Grassland to forest | 0.01% | |
Forest | 1% | Cropland to urban | 0.4% | |
Water | 0.07% | Grassland to urban | 1% | |
Urban | 0.5% | Forest to urban | 0.2% | |
Cropland to grassland | 0.2% | Forest to grassland | 0.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Q.; Zhou, S.; Wang, L.; Zhu, M.; Liu, D.; Tang, W.; Zhao, X.; Xu, S.; Ye, S.; Lee, J.; et al. Quantifying the Contribution of LUCC to Surface Energy Budget: A Case Study of Four Typical Cities in the Yellow River Basin in China. Atmosphere 2021, 12, 1374. https://doi.org/10.3390/atmos12111374
Chi Q, Zhou S, Wang L, Zhu M, Liu D, Tang W, Zhao X, Xu S, Ye S, Lee J, et al. Quantifying the Contribution of LUCC to Surface Energy Budget: A Case Study of Four Typical Cities in the Yellow River Basin in China. Atmosphere. 2021; 12(11):1374. https://doi.org/10.3390/atmos12111374
Chicago/Turabian StyleChi, Qian, Shenghui Zhou, Lijun Wang, Mengyao Zhu, Dandan Liu, Weichao Tang, Xiao Zhao, Siqi Xu, Siyu Ye, Jay Lee, and et al. 2021. "Quantifying the Contribution of LUCC to Surface Energy Budget: A Case Study of Four Typical Cities in the Yellow River Basin in China" Atmosphere 12, no. 11: 1374. https://doi.org/10.3390/atmos12111374
APA StyleChi, Q., Zhou, S., Wang, L., Zhu, M., Liu, D., Tang, W., Zhao, X., Xu, S., Ye, S., Lee, J., & Cui, Y. (2021). Quantifying the Contribution of LUCC to Surface Energy Budget: A Case Study of Four Typical Cities in the Yellow River Basin in China. Atmosphere, 12(11), 1374. https://doi.org/10.3390/atmos12111374