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Abstract: The impact of human activities on vegetation has been the focus of much research, but the
impact on radiation energy through surface albedo associated with vegetation greenness and length
of the growth season is still not well documented. Based on the land cover data for the years 2000
and 2015, this study first divided the land cover change in Beijing from 2000 to 2015 into five types
according to the impact of human activities and vegetation resilience, namely, old urban areas (OU),
urban expansion areas (UE), cropland (CP), mixed pixel areas (MP, which means the land covers
other than urban expansion which had changed from 2000 to 2015), and the residual vegetation cover
areas (pure pixels (PP), dominated by natural and seminatural vegetation, such as grassland, forest,
and wetland). Then, we calculated the direct radiative forcing from the albedo change from 2000 to
2015 and analyzed the effect of vegetation on the albedo under different land cover types based on
multi-resource Moderate Resolution Imaging Spectroradiometer (MODIS) products of vegetation,
albedo, and solar radiation. The results showed that the most typical changes in land cover were
from urban expansion. By comparing the PP with the four human-affected land cover types (OU, UE,
MP, and CP), we confirmed that the radiative forcing increment between 2001–2003 and 2013–2015
in PP (0.01 W/m2) was much smaller than that in the four human-affected land cover types (the
mean increment was 0.92 W/m2). This study highlights that human activities affected vegetation
growth. This, in turn, brought changes in the albedo, thereby enhancing radiative forcing in Beijing
during 2000–2015.

Keywords: urbanization; land cover; phenology; vegetation index; radiation energy budget

1. Introduction

Accelerated human activities are fundamentally altering the Earth’s surface cover and biophysical
processes. More than half of the Earth’s land surface has been modified by direct human use,
and the impacts of human activity on land cover are expected to increase due to population growth
and urbanization [1,2]. The expansion of infrastructure and agriculture necessitated by population
growth has quickened the pace of land cover transformation [3]. The current transformation of
land cover, particularly urban expansion and the loss of agricultural land, is unsustainable in some

Remote Sens. 2020, 12, 837; doi:10.3390/rs12050837 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-4030-4976
https://orcid.org/0000-0003-4140-7512
https://orcid.org/0000-0001-5687-803X
http://www.mdpi.com/2072-4292/12/5/837?type=check_update&version=1
http://dx.doi.org/10.3390/rs12050837
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 837 2 of 17

regards [4]. Human activity can not only directly change the type of land cover but can also indirectly
affect the vegetation growth process by influencing the climate system [5,6]. The land cover and
vegetation changes in turn lead to changes in the biogeophysical factors, such as surface albedo [7–9],
which characterizes the surface’s ability to reflect solar radiation [10,11]. Therefore, studying the effect
of human activity on the energy balance is important for understanding the effects of human activities
on the climate [12].

Albedo directly affects the energy budget [13]. Land cover change can effectively reflect the
impacts of human activity on vegetation and its corresponding surface albedo, although the variation
of albedo depends not only on the land cover and vegetation change [14–16]. Numerous studies have
analyzed the relationships between albedo and land cover change, and vegetation greenness and
the length of the growth season [17]. As a typical land cover change under human activities, urban
expansion always replaces cropland and other natural or seminatural vegetation cover like forest,
grassland, and wetland [4], which are accompanied by the increase of buildings, and the corresponding
albedo will increase or decrease due to the higher or lower albedo of the main building materials used
during the urban expansion of the initial lands occupied.

Moreover, introduced vegetation, landscape replanting and greening often exist in urban areas
and urban vegetation also has more opportunities to receive well management [18]. Meanwhile,
albedo varies along with the vegetation growth and shows seasonal characteristics. For example,
forests during the whole growth season have various albedo [17]. All these imply that both vegetation
cover and surface albedo experience multi–interventions and what they reflect are synthetic land
surface characteristics.

In general, to measure the impacts of human activity on land surface, as a typical accumulation
area of human activities, urban area and its expansion and its effect on vegetation growth and regional
climate have been extensively studied [19,20]. In these studies, it is common to compare the land
surface temperature difference and vegetation characteristics of urban areas with those of non-urban
areas or rural areas in and around the city [21]. However, when those of non-urban areas are just used
as statistical units, this ignores the differences of various human activity and vegetation cover (human
impact and vegetation resilience). Therefore, some studies have represented the human impact by
analyzing the impact of various land cover types on land surface temperature [22].

Temperature is a manifestation of radiant energy and to quantify the impacts of human activity
on radiant energy, many studies have carried out climate change simulations from land cover change
based on regional climate models [23,24]. Models can reflect the detailed physical process, but there are
numerous model parameters, and the sensitivity of climate factors to land cover change after integrating
various parameterization schemes for climate models always leads to variable results [25,26]. Therefore,
it is difficult to explain the climate contribution corresponding to the change of land cover [27,28].
To solve this problem, the Intergovernmental Panel on Climate Change (IPCC) used a simplified
parameterization scheme to calculate the radiative forcing (RF) and analyzed the climate effect of land
cover change from the surface albedo [12,29,30], which made it possible to calculate the RF on the pixel
scale using remote sensing data [31].

The aim of this study is to assess how human activity affects radiation forcing through surface
albedo associated with vegetation on the pixel scale in Beijing, a megacity undergoing rapid urbanization
in China. On the basis of the public land cover, vegetation, surface albedo, and downward shortwave
radiation data extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) remote
sensing images, we used a simplified parameterization scheme, as recommended by IPCC, to analyze
the land cover changes and the impacts of vegetation on the albedo and corresponding RF in Beijing
from 2000 to 2015. In fact, this study not only effectively integrates remote sensing data but also
expands the application of remote sensing in studying climate change from the perspective of
biogeophysical parameters.
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2. Materials and Methods

2.1. Study Area

Beijing is the capital of China and is located in northern China (115.7◦E–117.4◦E, 39.4◦N–41.6◦N),
with a total area of 16.41 thousand km2. Mountains are mainly found to the northwest while the
southeast is made up of plains. Beijing has a monsoon-influenced semi-humid continental climate.
Based on the Köppen–Geiger climate classification, most regions in Beijing belong to the warm
continental climate/humid continental climate, and a few regions belong to the Cold semi-arid
climate [32]. The annual average air temperature is ~12 ◦C, and the annual average precipitation
reaches ~640 mm. The average annual sunshine in Beijing is between 2000 and 2800 hours. As the
capital of China, human activity is very intense, and Beijing is experiencing rapid urbanization [4].
In addition to urban areas and croplands, the vegetation types in Beijing are mainly warm temperate
deciduous broad-leaved forests, with small areas of warm coniferous forests and grasslands (Figure 1).
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2.2. Data Collection

Land cover data for 2000 and 2015 were used to identify the multi-year land cover change in
Beijing. The latest version of land cover data with a 1 km spatial resolution was downloaded from
the Natural Resources and Environment Center, Chinese Academy of Sciences (http://www.resdc.cn).
The data were produced by manual visual interpretation with the support of Landsat Thematic Mapper
(TM) / Enhanced Thematic Mapper Plus (ETM+) images and the data accuracy was far more than
90% [33,34].

Solar radiation (downward shortwave radiation) and surface albedo data from 2000 to 2015
were used to calculate the temporal and spatial dynamics of RF. Based on MODIS source data,
the downward shortwave radiation data with a spatial resolution of 0.05◦ × 0.05◦ and a temporal
resolution of one month were produced by Environmental Ecology Laboratory, Seoul National
University (http://environment.snu.ac.kr/) [35]. As for albedo data, a MODIS inversion product
(MCD43A3) with a spatial resolution of 500 m and original temporal resolution of 16 days was used in this
study (Land Processes Distributed Active Archive Center, LPDAAC, https://modis.gsfc.nasa.gov/) [36].
Here we integrated black-sky and white-sky albedos for shortwave broadband (BSA and WSA) data to
calculate the annual average albedo data [37,38].

Enhanced vegetation index (EVI) and the length of season (LOS) data from 2000 to 2015 were
selected to measure the growth status of vegetation. The EVI reflects the vegetation greenness and
LOS reflects the vegetation growth process [39–41]. In this study, EVI data were the MODIS product of
MOD13A1, with the original spatial and temporal resolutions of 500 m and 16 days [42]; LOS data
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were the MODIS product of MCD12Q2, with the original spatial resolutions of 500 m [43]. Both of the
two vegetation data products were collected from the NASA’s LPDAAC (https://modis.gsfc.nasa.gov/).

2.3. Study Methods

2.3.1. Data Preprocessing for Remote Sensing Data Products

All the four data products (EVI, LOS, albedo, and solar radiation) used in this study are publicly
available remote sensing data products. The original remote sensing source images of the four data
all come from MODIS, which is conducive to our analysis [35,36,41]. The time span of these remote
sensing data products was from 2000 to 2015. In this study, the annual LOS and annual average data
of EVI, albedo, and solar radiation data were used for the corresponding calculations and analysis,
given that the land parameters changed in every season and its climate effect happens over the year.
In addition, anomalies and outliers may exist in these data products but we retained all the pixel
information. This is mainly based on the following considerations: First, there is no uniform standard
definition or criteria to judge which pixels should be noise points; second, some intensive changes
may exist theoretically given the intensity of human activity and its impact on surface cover in Beijing.
In fact, the annual average processing also plays a filter role.

2.3.2. Land Cover Reclassification

Considering human activity (or interference to the ecosystems) and vegetation resilience together,
we reclassified the land cover data from two periods, 2000 and 2015. The study first divided the two
periods of land cover data into three types: urban areas, cropland, and other land types (dominated by
natural and seminatural vegetation, such as grassland, forest, and wetland) [44]. Then, we used the
raster overlay method to convert the two land cover layers to five new land cover types (Figure 2),
namely old urban areas (OU, which means that the land had remained urban areas from 2000 to 2015.
OU means the ultimate type of urbanization affecting surface cover, which is continuously affected by
human activities and the natural and seminatural vegetation recovers with difficulty); urban expansion
areas (UE, which means that the other land cover types in 2000 had been converted to urban areas by
2015); cropland (CP, which means that the land covers only one type of cropland); mixed pixels (MP,
which means the land covers other than urban expansion which had changed from 2000 to 2015); and
the residual natural and seminatural vegetation cover areas (pure pixels (PP), which means that the
land contains only the residual land cover types (forest, grassland, or wetland) other than urban area
and cropland). This study assumed that the PP areas corresponded to the natural situation since the
PP pixels were mainly dominated by natural and seminatural vegetation with strong resilience, and
the other four land cover types were affected by human activities to some extent [45–47]. Therefore,
the difference in the statistical variables between PP and the other four land cover types represented
the impact intensity of human activities.
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2.3.3. Radiative Forcing

RF, which is used to describe temperature change, can express an imbalance in the planet’s
radiation budget caused by human interventions [48,49]. For shortwave forcing agents, the RF at the
top of the atmosphere (TOA) can be expressed as [50,51]:

RF = −RTOA∆αp, (1)

where RTOA is the downward shortwave radiation at the TOA and ∆αp is the change value in
planetary albedo.

On the basis of the study of Lenton et al. [50,52], the local RF caused by surface albedo (RFalb) can
be expressed as:

RFalb = −RTOA fa∆αs, (2)

where ∆αs is the variation in surface albedo and this study uses ∆albedo to represent the difference
between annual albedo during 2001–2015 and albedo in 2000; ƒa is the parameters of the entire
atmosphere that absorb and reflect solar radiation. ƒa can be calculated by:

fa =
Rs

RTOA
Ta, (3)

where Rs is downward shortwave radiation at the Earth’s surface; Ta is a parameter accounting for
the reflected fraction of radiation from the surface to the TOA during the atmospheric transmittance
process (here a global value of 0.854 was used). Finally, the local RFalb can be expressed based on
surface albedo and atmospheric transmittance parameters:

RFalb = −RsTα∆αs. (4)

2.3.4. Linear Slope Analysis

Linear regression is commonly used to assess the linear trend. The change trends of vegetation,
albedo, and RF were calculated by the slope of the least squares regression. If we have one dataset (x1,
. . . , xn) containing n values and another dataset (y1, . . . , yn) containing n values then the formula for
slope is:

Slope =
n
∑

xy−
∑

x
∑

y

n
∑

x2 − (
∑

x)2 . (5)

3. Results

3.1. Land Cover Change from 2000 to 2015

Urban areas and croplands changed noticeably, while the proportion of the other land types was
always dominant from 2000 to 2015 (Figure 3). Croplands were most often converted to new urban
expansion areas. In 2000, the proportions of urban areas, croplands, and the other land types in Beijing
were 7.67%, 31.65, and 60.68%, respectively. By 2015, the proportions of the three land cover types had
changed to 10.82%, 28.15%, and 61.03%, respectively. In the past 15 years, urban areas grew by 517 km2,
and the area change rate was 41.1%. Correspondingly, croplands decreased by 575 km2, and the area
change rate was 11.1%. The area of the other land types dominated by natural and seminatural land
cover types increased slightly by 58 km2, and the area change rate was only 0.6% (Table 1).

As for the temporal and spatial changes of the periods of land cover data, this study divided the
land cover change into five types based on the degree of human intervention: OU, UE, MP, CP, and PP.
The main land cover type in Beijing was PP, covering an area of 9579 km2, followed by CP, with an area
of 4603 km2. The total urban area reached 1776 km2 in 2015, including the OU of 1259 km2 and the UE
of 517 km2. The area of MP in Beijing was small, only 272 km2 during the whole study period.
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Table 1. Area of land cover types in Beijing in 2000 and 2015. The unit of area is km2.

Land Cover Types Area in 2000 Area in 2015

Urban areas 1259 1776
Cropland 5194 4619

Other land cover types 9957 10015

3.2. Impacts of Human Activities on Vegetation in Various Land Cover Types

This study compared the differences of EVI and LOS among various land cover types. Figure 4
shows that the EVI had a decreasing trend with the degree of human activity. PP had the largest EVI
and the average value from 2000 to 2015 was 0.229; followed by CP, with an average EVI of 0.216.
However, the EVIs in OU, UE, and MP with a relatively dense population and a large influence were
all relatively small, with averages of 0.139, 0.177, and 0.194, respectively. In contrast, the average value
of LOS generally exhibited a decreasing trend with the degree of human activity in the five land cover
types, namely OU > UE > MP > CP > PP. Figure 4 also showed that the LOS in OU was the longest,
which implies that LOS is clearly affected by human activities.
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This study used the annual changes of EVI and LOS for the five land cover types to assess the
detailed impacts of human activities on vegetation greenness and growth process (Figure 5). From 2000
to 2015, the overall EVI in Beijing showed a significant increasing trend, with an annual growth rate
of 0.002. In each land cover type, the EVI of OU, CP, and PP showed a significant increasing trend,
with annual growth rates of 0.002, 0.001, and 0.003, respectively. Although the EVI of UE and MP also
showed an increasing trend, they did not pass the significance test of P < 0.05.
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Figure 5. Spatial pattern and temporal changes of enhanced vegetation index (EVI) in Beijing. a and
b are the spatial patterns of annual trend and significant test (P value); c is the annual change with
standard deviation (shadow zones with different colors) of various land cover types for EVI from 2000
to 2015.

We assumed that the vegetation growth changes corresponding to the PP were mainly affected
by natural factors and represented the natural change rate. In Beijing the change rate in the natural
EVI was 0.003 (PP slope). On the basis of this, the differences between the change rate of EVI in the
other four land cover types and PP were calculated (minus PP slope), and then the differences for OU,
UE, MP, and CP were −0.001, −0.002, −0.002, and −0.002, respectively. In addition, in the regression
analysis comparing PP with the other four land cover types, the regression slopes of OU, UE, MP,
and CP were all less than 1 (Figure 6). All these indicate that, compared with PP, regardless of the
degree of the human influence, the change trends of the four land cover types were all lower than
PP, indicating that human activities have a negative effect on the vegetation greenness, although the
vegetation greenness in the whole study area increased from 2000 to 2015.
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To measure the impact of human activities on the growth process of vegetation, this study used
the LOS for comparative analysis. From 2000 to 2015, the overall LOS of Beijing showed a significant
increasing trend, with an overall growth rate of 1.46. The LOS in UE, MP, and CP showed a large and
significant increasing trend of 2.12, 2.10, and 1.80, respectively. Although the LOS in PP also showed a
significant increasing trend, the rate was the smallest (Figure 7).

Assuming that the change of LOS in PP corresponds to the change rate under natural conditions,
the natural change rate of LOS in Beijing was 1.20. The differences of LOS between the change rate
of the other four land cover types and PP were calculated. The residual change rates of OU, UE, MP,
and CP were 1.14, 0.92, 0.90, and 0.60. All regression coefficients of the LOS in the four land cover
types impacted by human activities were greater than 1 (Figure 8). The analysis results for LOS were
clearly the opposite to the results for EVI, showing that human activities have a positive effect on the
LOS (increasing the LOS) and the effect increases along with the impact intensity of human activities.
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3.3. Albedo Changes and Radiative Forcing of Various Land Cover Types
Factors such as vegetation greenness and growth length directly affect the surface albedo, which in

turn affects radiative forcing. In this study, we analyzed the relationship between the albedo, EVI and
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LOS in Beijing, finding a significant negative correlation between the albedo and EVI, and the LOS
(Figure 9). Except for the UE and PP, the negative correlations between the albedo and EVI were all
significant in the other three land cover types (P < 0.05). Among the five land cover types, the albedo of
MP decreased most rapidly with the increase of EVI. In contrast, the absolute value of the linear slope
in PP was the smallest, at −0.02. This indicates that EVI in the natural PP does not have a significant
impact on the albedo. In terms of LOS, apart from in PP, the albedo and LOS showed a negative
correlation in the other four land cover types, and the significance gradually increased in CP, UE, MP,
and OU (P-value tended towards 0). The linear slopes of the LOS and albedo in the five land cover
types were all very small compared with the EVI and albedo. The absolute values of the linear slope in
UE, MP, and CP were the largest; however, the averaged value was only −0.0002. The absolute values
of the linear slope in OU was smallest than that in UE, MP, and CP; however, the slope value in PP was
very close to 0. These indicate that the extension of the vegetation growth length has little effect on the
surface albedo for natural vegetation, while the extension of LOS reduced the surface albedo under the
influence of human activities. Overall, in the four land cover types under human influence, both EVI
and LOS had a negative correlation with the albedo, indicating that human activities have contributed
to the changes of albedo by affecting the EVI and LOS.
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In terms of the annual dynamics of albedo, the albedo in OU, UE, MP, and CP were generally
higher than the albedo in PP. From 2000 to 2015. The albedo in OU, UE, MP, and CP all showed a
significant decreasing trend, with the highest rate of decline of−0.0008, while the albedo in PP remained
almost stable during the study period. Overall, the albedo in Beijing showed a slight decrease, and the
linear trend did pass the significance test of 0.05 (Figure 10).
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Figure 10. Spatial pattern and temporal changes of surface albedo in Beijing. a and b are the spatial
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Here, we used the albedo in 2000 for the initial benchmark and introduced RF to express the direct
impact of albedo changes on the energy budget. RF showed an increasing trend over the 15 years in
different land cover types except that in UE (Figure 11). The mean RF in PP was low, and its rate of
increase was close to zero. The human-affected OU, MP, and CP had higher RF, and their increasing
trends were faster than PP. In addition, the mean RF differences between 2001–2003 and 2013–2015
showed that the RF increment in PP was the smallest, 0.01 W/m2, while the RF increments in the four
human-affected land cover types were all much larger than that in PP (with a mean increment of 0.92
W/m2). These figures from the long-term series indicate that the role of human activities in enhancing
RF will be reflected once they occur.
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4. Discussion

Human activities change the surface energy by affecting the vegetation cover, although vegetation
has many influencing factors [53]. The surface albedo is also affected by many factors [7,54]. Our analysis
showed that EVI and LOS had an increasing trend between 2000 and 2015. Although we cannot
distinguish the influence of human activities from other influences (such as temperature and
precipitation), we can partly identify changes to vegetation growth under different intensities of
human activities through the analysis of various land cover types. In this study, according to our
limited cognition and related references [45–47], the five land cover types are defined to represent
different impact levels of human activity and vegetation resilience to some extent (Figure 2).

The differences between PP and the other four land cover types are defined as the human impacts.
The analysis results showed that the distinctions of EVI among the five land cover types were very
obvious, but the differences of LOS among the five land cover types were not so regular (Figure 4).
On the one hand, these results partly confirm that the setting of land cover type is basically in line with
the laws of human impact and vegetation restoration; on the other hand, these results also imply that
the relevant work is far from enough, and needs to be further extended as both human impact and
vegetation resilience are hard to exactly quantify.

Many studies have shown that human activities had a negative impact on vegetation cover due
to the increase of impervious surfaces but a positive impact on growth length due to the increase
of the changing urban environment [18,19,55–57]. All these studies provide basic supports for our
study assumption, and our results are also essentially or partly consistent with these conclusions.
Correspondingly, for the biogeophysical parameter albedo, it is generally believed that values will
increase in urban areas, thereby reflecting more solar radiation and reducing the energy source,
while the values may also decrease due to the effect of building shadow [6,58].

However, this study showed that, compared with PP, the other four land cover types had less
EVI and longer LOS than PP, i.e., human activities reduced EVI but extended LOS in the four land
cover types affected by human activities. This might be due to the impacts of factors, such as the
urban heat island effect and human management on vegetation [19,41,59]. Although the albedo of
natural vegetation (PP) was lower and the corresponding RF was larger, the RF in the four land cover
types affected by human activities showed a significant increase, and the RF increment was also larger.
These results demonstrated that the involvement of human activities will significantly enhance the RF
over time. However, this study provides a simple analysis on RF and land cover types affected by
human activity. In the future, a process model with dynamic vegetation and atmospheric circulation
may be necessary to obtain a quantitative impact value of human activities on RF.

Previous studies used the multi-year average solar radiation to replace annual solar radiation
to calculate the annual RF [31]. In Beijing, we also calculated the radiative forcing (RF) using the
multi-year average solar radiation to replace the annual solar radiation. The RF only reflected the
albedo change but ignored the change of solar radiation. However, the RF (0.828 W/m2) was slightly
more than the RF (0.796 W/m2). It should be noted that although this study used annual solar radiation
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data, the data sources used in this study were not uniform and their spatial resolutions were different,
which might have an impact on our results.

In general, at the kilometer level (or 500 m in this study), mixed pixels always exist. Given that
urban area occupies a large proportion in Beijing, the atmospheric conditions in urban, suburban,
and neighboring rural areas are all impacted by human activities [20,60]. Furthermore, the areas
of anthropogenic impacts on vegetation and albedo are much larger than the urban boundary
itself [19,55,57,61]. The impacts of human activities, such as urbanization, are often reflected on a larger
scale. A regional climate model can simulate the climatic effects of the underlying surface changes at a
mesoscale resolution [24,62]. Some scholars have used the relatively coarse-resolution remote sensing
data (0.5◦ resolution) to study the effects of human influence on vegetation phenology and production,
as well [19,20], but the land cover changes within a pixel cannot be checked.

In fact, it is important to distinguish the different effects of vegetation and non-vegetation factors
(such as impervious layers) on the albedo within mixed pixels. For example, improving vegetation
coverage and building asphalt roads (impervious layers with low albedo) may both reduce albedo, but
they have very different effects on the regional energy budgets. Judging from our study data, both EVI
and LOS within the mixed pixels with negligible vegetation will be small enough. We can think of these
gridcells as NODATA. However, theoretically, EVI and LOS can only reflect vegetation information.
In a mixed pixel, in addition to the vegetation element, there are other elements to consider (such as
water bodies, roads, squares, buildings, etc.).

When the area proportion of vegetation in a mixed pixel is negligible or there is no vegetation,
the change in albedo corresponding to this pixel will be irrelevant to vegetation. This is an important
reason why the relationship between vegetation and albedo in this study is not always significant.
This gives us a hint that the results of this study may be more reliable in pixels with a larger EVI or
areas with larger vegetation coverage; however, this basic conclusion cannot be fully confirmed in our
study: Figure 9 shows that the EVI in urban areas (with very small EVIs) is significantly correlated
with albedo. This may mean that the interferences of non-vegetation factors on albedo cannot be
ignored, or that the two vegetation indicators (EVI and LOS) used in this study cannot fully reflect all
vegetation characteristics, or that there are many differences in the sensitivity of various vegetation
types (such as trees, shrubs, grasses) to albedo.

Therefore, climate effects corresponding to complex land cover change should be deeply analyzed
on a fine-scale in the future. In addition, given that some anomalies may affect the data accuracy and
that the land cover parameters vary obviously within a year, a data quality control and a seasonal
analysis would be better to indicate our findings in this study. In view of this, the specific values of
this study should be carefully understood.

5. Conclusions

Under the impacts of human activities, the land cover pattern in Beijing has undergone significant
changes, especially in croplands and urban areas. Urban areas grew by 517 km2, and the area change
rate was 41.1% from 2000 to 2015. The vegetation in different land cover types had different growth
conditions. The mean and trend values of EVI in PP, which was less affected by human activities, were
larger than that in the four land cover types affected by human activities. The LOS in Beijing extended
significantly (P < 0.05) in the human-affected land cover type OU, UE, and MP, compared with PP.
The difference in the vegetation growth status among various land cover types in Beijing was reflected
in the surface albedo, and the RF was thus affected by the albedo change.

Overall, the decrease of albedo reduced the reflection of solar radiation, and human activity
increased the radiant energy input. The mean RF differences between 2001–2003 and 2013–2015 showed
that the RF increment in PP was the smallest, 0.01 W/m2, while the RF increments in the other four
human-affected land cover types were all much larger than that in PP (with a mean increment of
0.92 W/m2). Therefore, from the perspective of the radiation budget, human activities have a positive
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radiative forcing effect. This study emphasizes the importance of land biogeophysical parameters,
and our findings also contribute to the physical mechanism of the urban heat island effect.
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