Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks
Abstract
:1. Introduction
2. Monitoring Sites and Methods
- SO2 and H2S—“СВ-320”, OPTEC (Optics in Ecology), Saint Petersburg, Russia); the detection limit is 0.001 mg/m3 and error rate 10–15%.
- NO and NO2—“РА-310А”, OPTEC, Saint Petersburg, Russia; the detection limit is 0.001 mg/m3 and error rate 10–15%.
- CO—“К-100”, OPTEC, Saint Petersburg, Russia; the detection limit is 0.1 mg/m3 and error rate 10–15%.
- O3—“F-105”, OPTEC, Saint Petersburg, Russia; the detection limit is 0.001 mg/m3 and error rate 10–15%.
- Hg (gaseous elemental)—РА-915АМ, Lumex, Saint Petersburg, Russia; the detection limit is 0.5 ng/m3 and error rate 10%.
- Aerosols (PM10; PM2.5; PM1.0)—“DUSTTRACK—8533” (TSI, Shoreview, MN, USA); the detection limit is 0.001 mg/m3 and error rate 10–15%.
- Ultrasonic meteorological station—“Meteo-2М” (IОА SB РАS, Tomsk, Russia).
3. Results and Discussion
3.1. Transport Processes of Pollutants and Seasonal Variability in Diurnal Concentrations of Sulfur Oxides in the Atmosphere of Lake Baikal and in the Air of Source Cities
3.2. Short-Term Daily Variations of Air Pollutants Transfers to Lake Baikal and Their Possible Chemical Transformations
3.3. Influence on the Chemical Composition of Precipitation above the Lake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, C.W.; Lee, D.S. Atmospheric deposition of sulphur and nitrogen species in United Kingdom. Freshwater Biol. 1996, 36, 151–167. [Google Scholar] [CrossRef]
- Fiedler, V.; Nau, R.; Ludmann, S.; Arnold, F.; Schlager, H.; Stohl, A. East Asian SO2 pollution plume over Europe—Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations. Atmos. Chem. Phys. Discuss. 2009, 9, 4717–4728. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsen, G.; Stuanes, A.O.; Tveite, B. Effect of long range transported air pollutants in Scandinavia. Water Qual. Bull. 1983, 8, 89–95. [Google Scholar]
- Ionel, I.; Makra, L.; Csépe, Z.; Tusnády, G.; Cercelaru, C.; Ioan Ungureanu, C. Assessment of relationship between meteorological elements and air pollutants load in an urban environment. J. Environ. Prot. Ecol. 2018, 19, 1462–1471. [Google Scholar]
- Grennfelt, P.; Engleryd, A.; Forsius, M.; Hov, Ø.; Rodhe, H.; Cowling, E. Acid rain and air pollution: 50 years of progress in environmental science and policy. AMBIO 2019, 49, 849–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netsvetaeva, O.G.; Golobokova, L.P.; Obolkin, V.A.; Khodzher, T.V. Multiyear research of atmospheric deposition: Case study at the Listvyanka monitoring station (Southern Pribaikalye, Russia). In 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics; SPIE: Bellingham, WA, USA, 2018; Volume 10833, pp. 1–6. [Google Scholar]
- Vladimir, O.; Tamara, K.; Larisa, S.; Irina, T.; Olga, N.; Ludmila, G. Effect of long-range transport of sulphur and nitrogen oxides from large coal power plants on acidification of river waters in the Baikal region, East Siberia. Int. J. Environ. Stud. 2016, 73, 452–461. [Google Scholar]
- Monitoring of Environmental Pollution. Available online: http://www.feerc.ru/baikal/ru/monitoring/air/ (accessed on 20 August 2021).
- IUGMS. The State of Atmospheric Air Pollution in Cities on the Territory of the Activity of the FSBI Irkutsk UGMS in 2016. In Yearbook; IUGMS: Irkutsk, Russia, 2017; 100p. [Google Scholar]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory Model). 2013. Available online: https://www.scienceopen.com/document?vid=3c4d79f1-5098-4dbd-83f3-64a0020f78da (accessed on 21 June 2021).
- Cocks, A.T.; Kallend, A.S.; Marsh, A.R.W. Dispersion limitations of oxidation in power plant plumes during long-range transport. Nature 1983, 305, 122–123. [Google Scholar] [CrossRef]
- Obolkin, V.A.; Potemkin, V.L.; Makukhin, V.L.; Chipanina, Y.V.; Marinayte, I.I. Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal Region. Int. J. Environ. Stud. 2014, 71, 391–397. [Google Scholar] [CrossRef]
- Ventura, A.; Simões, E.; Almeida, A.; Martins, R.; Duarte, A.; Loureiro, S.; Duarte, R. Deposition of Aerosols onto Upper Ocean and Their Impacts on Marine Biota. Atmosphere 2021, 12, 684. [Google Scholar] [CrossRef]
- Bondarenko, N.A.; Tomberg, I.V.; Shirokaya, A.A.; Belykh, O.I.; Tikhonova, I.V.; Fedorova, G.A.; Netsvetaeva, O.G.; Eletskaya, E.V.; Timoshkin, O.A. Dolichospermum lemmermannii (Nostocales) bloom in world’s deepest Lake Baikal (East Siberia): Abundance, toxicity and factors influencing growth. Limnol. Freshw. Biol. 2021, 4, 1101–1110. [Google Scholar] [CrossRef]
- Obolkin, V.A.; Volkova, E.A.; Ohira, S.I.; Toda, K.; Netsvetaeva, O.G.; Chebunina, N.S.; Nosova, V.V.; Bondarenko, N.A. The role of atmospheric precipitation in the under-ice blooming of endemic dinoflagellate Gymnodinium baicalense var. minor An-tipova in Lake Baikal. Limnol. Freshw. Biol. 2019, 2, 345–352. [Google Scholar] [CrossRef]
- Kravtsova, L.S.; Izhboldina, L.A.; Khanaev, I.V.; Pomazkina, G.V.; Rodionova, E.V.; Domysheva, V.M.; Sakirko, M.V.; Tomberg, I.V.; Kostornova, T.Y.; Kravchenko, O.S.; et al. Nearshore benthic blooms of filamentous green algae in Lake Baikal. J. Great Lakes Res. 2014, 40, 441–448. [Google Scholar] [CrossRef]
- Khuriganova, O.; Obolkin, V.; Akimoto, H.; Ohizumi, T.; Khodzher, T.; Potemkin, V.; Golobokova, L. Long-Term Dynamics of Ozone in Surface Atmosphere at Remote Mountain, Rural and Urban Sites of South-East Siberia, Russia. Open Access Libr. J. 2016, 3, e2578. [Google Scholar] [CrossRef]
- Miller, J.D.; Anderson, H.A.; Harriman, R.; Collen, P. The consequences of liming a highly acidified catchment in central Scotland. Water Air Soil Pollut. 1995, 85, 1015–1020. [Google Scholar] [CrossRef]
- Moiseenko, T.I. The determination of the critical loads of acid deposition for surface waters. Water Resour. 2002, 3, 322–328. [Google Scholar]
- Semenov, M.Y.; Khodzher, T.V.; Obolkin, V.A.; Domysheva, V.M.; Golobokova, L.P.; Kobeleva, N.A.; Netsvetaeva, O.G.; Potemkin, V.L.; Van Grieken, R.; Fukuzaki, N. Assessing the acidification risk in the lake Baikal region. Chem. Ecol. 2006, 22, 1–11. [Google Scholar] [CrossRef]
- Onischuk, N.A.; Netsvetaeva, O.G.; Tomberg, I.V.; Sakirko, M.V.; Domysheva, V.M.; Golobokova, L.P.; Khodzher, T.V. Seasonal dynamics of mineral forms of nitrogen in the rivers, snow cover and precipitation at the southwest coast of the Southern Baikal. Limnol. Freshw. Biol. 2019, 2, 245–252. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Sinyukovich, V.N.; Netsvetaeva, O.G.; Tomberg, I.V.; Sezko, N.P.; Lopatina, I.N. Chemical composition of snow and river water on the south-eastern coast of Lake Baikal. Meteorol. Hydrol. 2015, 5, 71–83. [Google Scholar]
- State Report on «About the State and environmental Protection of the Irkutsk Region in 2019» [Electronic Resource]. 2020. Available online: https://irkobl.ru/region/ecology/doklad/ (accessed on 20 September 2021).
Main Sources of Air Emission in the Region | Emission, Thousand Tons Per Year (1) | ||||
---|---|---|---|---|---|
SO2 | NO2 | CO | PM | ||
Irkutsk (60 km from the lake) | Thermal power plants Vehicles | 40 0.3 | 10 4.6 | 4.4 41 | 7.2 -- |
Angarsk (100 km from the lake) | Thermal power plants Vehicles | 90 0.1 | 14 1.4 | 7.6 13 | 20 -- |
Southern basin of Lake Baikal (Total emission from all settlements) | 2.3 | 0.6 | -- | -- | |
Ulan-Ude (100 km from the lake) | Thermal power plants Vehicles | 7.6 -- | 3.0 -- | 6.2 -- | 14 -- |
Gusinoozersk (70 km from the lake) | Thermal power plants Vehicles | 13 -- | 11 -- | 0.8 -- | 12 -- |
January (n = 2211) | July (n = 2276) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CO | NO | NO2 | SO2 | O3 | CO | NO | NO2 | SO2 | ||
CO | 1.00 | CO | 1.00 | |||||||
NO | 0.90 | 1.00 | NO | 0.68 | 1.00 | |||||
NO2 | 0.85 | 0.83 | 1.00 | NO2 | 0.24 | 0.18 | 1.00 | |||
SO2 | −0.11 | −0.13 | −0.01 | 1.00 | SO2 | 0.22 | 0.08 | 0.11 | 1.00 | |
O3 | −0.48 | −0.40 | −0.58 | 0.08 | 1.00 | O3 | -- | -- | -- | -- |
Period | SO42− | NO3− | Cl− | Na+ | K+ | Ca2+ | Mg 2+ | NH4+ | PO43− | pH |
---|---|---|---|---|---|---|---|---|---|---|
Precipitation in 2020, mg/L | ||||||||||
Year | 2.41 | 1.79 | 0.24 | 0.20 | 0.24 | 0.77 | 0.14 | 0.38 | 0.03 | 5.09 |
Winter | 2.96 | 3.30 | 0.35 | 0.32 | 0.23 | 1.28 | 0.20 | 0.43 | 0.04 | 5.24 |
Summer | 1.99 | 0.77 | 0.14 | 0.10 | 0.27 | 0.35 | 0.08 | 0.34 | 0.03 | 4.88 |
Maximum | 12.20 | 8.16 | 0.93 | 1.37 | 1.39 | 3.68 | 0.61 | 2.36 | 0.22 | 6.44 |
Minimum | 0.28 | 0.09 | 0.01 | 0.03 | 0.02 | 0.02 | 0.01 | 0.03 | 0.00 | 4.21 |
Lake Baikal water (surface), mg/L | ||||||||||
Average | 5.50 | 0.50 | 0.47 | 3.30 | 0.95 | 16.1 | 3.0 | 0.01 | 0.01 | 8.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obolkin, V.; Molozhnikova, E.; Shikhovtsev, M.; Netsvetaeva, O.; Khodzher, T. Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks. Atmosphere 2021, 12, 1348. https://doi.org/10.3390/atmos12101348
Obolkin V, Molozhnikova E, Shikhovtsev M, Netsvetaeva O, Khodzher T. Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks. Atmosphere. 2021; 12(10):1348. https://doi.org/10.3390/atmos12101348
Chicago/Turabian StyleObolkin, Vladimir, Elena Molozhnikova, Maxim Shikhovtsev, Olga Netsvetaeva, and Tamara Khodzher. 2021. "Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks" Atmosphere 12, no. 10: 1348. https://doi.org/10.3390/atmos12101348
APA StyleObolkin, V., Molozhnikova, E., Shikhovtsev, M., Netsvetaeva, O., & Khodzher, T. (2021). Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks. Atmosphere, 12(10), 1348. https://doi.org/10.3390/atmos12101348