Volatile Organic Compound Composition of Urban Air in Nairobi, Kenya and Lagos, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection Sites
2.2. Sample Collection
2.3. Internal Standard Addition
2.4. TD-GC×GC–MS Quality Control
2.5. Calibration Standards and Compound Identification
2.6. TD-GC–MS Analysis
3. Results
3.1. Urban Air Visualization
3.2. Total VOC by Site
3.3. Relative Contribution TVOC
3.4. Quantification of VOC Pollutants in Air
3.5. Classification of Sources of VOCs
3.6. Ozone Forming Potential
OFP (µgm−3) | ||||
---|---|---|---|---|
Nairobi | Lagos | |||
Roadside | Urban Background | Roadside/ Commercial | Urban Background | |
1,2-dichloro propane | ND | ND | ND | ND |
1-butanol | ND | ND | ND | ND |
1-propanol a | ND | ND | 2.06 | 0.85 |
2-butanone b | 4.10 | 3.40 | 18.12 | 3.42 |
2-ethyltoluene | 15.43 | 2.07 | 15.09 | 1.34 |
2-propanol | ND | ND | ND | ND |
3-ethyltoluene | 65.55 | 6.72 | 57.42 | 8.42 |
4-ethyltoluene | 8.39 | 1.38 | 13.05 | 2.09 |
4-methyl-2-pentanone | 1.71 | 0.78 | ND | ND |
Acenaphthene | NA | NA | NA | NA |
Acenaphthylene | NA | NA | NA | NA |
Acetone | 3.38 | 3.74 | 1.92 | 1.42 |
Alpha pinene | 1.49 | 0.45 | 0.54 | 0.23 |
Benzene | 15.55 | 3.56 | 17.45 | 3.02 |
Benzene, 1,2,3-trimethyl- | 45.13 | 4.55 | 27.17 | 2.15 |
Benzene, 1,2,4-trimethyl- | 108.57 | 10.82 | 81.34 | 9.14 |
Benzene, 1,3,5-trimethyl- | 35.63 | 3.65 | 32.22 | 3.06 |
Benzene, 1,4-dichloro- | 0.13 | 0.18 | 0.05 | 0.02 |
Benzophenone | 1.80 | 1.58 | 1.16 | 0.95 |
Beta pinene | 0.04 | 0.02 | ND | ND |
Bromodichloro-methane | ND | ND | ND | ND |
Butane, 2,2-dimethyl- | 9.51 | 0.96 | 15.07 | 14.86 |
Butane, 2-methyl- | NA | NA | NA | NA |
Butyl acetate | ND | ND | ND | ND |
Carbon tetrachloride | ND | ND | ND | ND |
Chloroform | ND | ND | ND | ND |
Cyclohexane, methyl- | 4.68 | 0.43 | 8.87 | 1.26 |
Cyclopentane, methyl- | 16.51 | 3.24 | 60.64 | 9.33 |
Cyclopropane, 1,2-dimethyl-, trans- | NA | NA | NA | NA |
Decanal | NA | NA | NA | NA |
Decane | 1.09 | 0.69 | 1.29 | 1.13 |
Dibenzofuran | NA | NA | NA | NA |
Dodecane | 0.51 | 0.15 | 0.69 | 0.14 |
Durene | 14.91 | 1.39 | 5.83 | 0.09 |
Eicosane | 0.14 | 0.10 | 0.04 | 0.01 |
Ethane, 1,1,1-trichloro | ND | ND | ND | ND |
Ethane, 1,2-dichloro- | ND | ND | 0.22 | 0.11 |
Ethanol | 5.49 | 1.81 | 40.07 | 16.37 |
Ethyl acetate | ND | ND | 2.03 | 1.54 |
Ethylbenzene | 25.48 | 3.34 | 46.00 | 5.59 |
Fluorene | NA | NA | NA | NA |
Heptadecane | 1.22 | 0.87 | 0.11 | 0.03 |
Heptane | 9.99 | 1.13 | 13.56 | 1.86 |
Hexadecane | 0.90 | 0.45 | 0.15 | 0.04 |
Hexane | 86.91 | 45.14 | 71.01 | 13.39 |
Hexane, 2 methyl- | 13.53 | 1.50 | 6.99 | 1.40 |
Hexane, 3-methyl- | 12.99 | 1.09 | 1.48 | 0.21 |
Limonene | 2.14 | 1.68 | 28.39 | 1.09 |
m/p-xylene (average) | 114.82 | 12.94 | 194.95 | 33.21 |
Methane, dibromochloro- | ND | ND | ND | ND |
Methylene chloride | ND | ND | 0.17 | 0.04 |
Naphthalene | 5.04 | 2.14 | 12.02 | 2.77 |
Naphthalene, 1-methyl- | 1.47 | 1.16 | 1.50 | 0.21 |
Naphthalene, 2-methyl- | 1.01 | 0.70 | 2.91 | 0.55 |
Nonadecane | 0.29 | 0.20 | 0.03 | 0.01 |
Nonanal | NA | NA | NA | NA |
Nonane | 0.66 | 0.29 | 3.54 | 0.97 |
Octadecane | 0.57 | 0.40 | 0.07 | 0.02 |
Octane | 1.85 | 0.50 | 5.18 | 0.85 |
o-Xylene | 81.90 | 8.79 | 67.69 | 11.77 |
pentadecane | 0.70 | 0.22 | 0.27 | 0.05 |
Pentane | 70.98 | 9.55 | 118.40 | 43.1 |
Pentane, 2,2,4-trimethyl- | 9.51 | 0.64 | 2.26 | 0.40 |
Pentane, 2,4-dimethyl- | ND | ND | ND | ND |
Pentane, 2-methyl- | 50.06 | 26.85 | 15.54 | 2.6 |
Pentane, 3-methyl- | 18.70 | 2.05 | 50.72 | 7.25 |
Phenanthrene | NA | NA | NA | NA |
Pyrene | NA | NA | NA | NA |
Styrene | 3.77 | 0.93 | 5.28 | 0.62 |
Tetrachloroethylene | ND | ND | 0.01 | 0 |
Tetradecane | 0.64 | 0.24 | 0.28 | 0.01 |
Toluene | 178.00 | 23.76 | 131.56 | 36.4 |
Trichloroethylene | 1.28 | 1.05 | ND | ND |
Tridecane | 0.53 | 0.17 | 0.62 | 0.09 |
Undecane | 0.76 | 0.31 | 1.08 | 0.09 |
Total | 1055.44 | 199.78 | 1184.11 | 245.58 |
3.7. BTEX Concentrations in Air
3.8. Exposure Calculations
3.9. Key Messages and Recommendations
- This study revealed very high levels of traffic-related VOCs in both Nairobi and Lagos and highlights that exposure to VOCs should be investigated alongside exposure to the more commonly measured air pollutants (NOx, O3, PM and SO2).
- Key similarities between the two cities were the high levels of aliphatic and aromatic hydrocarbons, including the carcinogen benzene, from vehicle exhausts and fuel evaporation, showing the dominance of traffic as a pollution source in such environments.
- Other emissions differed between the cities, particularly the OVOCs. These had a higher contribution to TVOC in Lagos, mostly due to the high abundance of ethanol, likely from the ethanol refining industry.
- While studies from China show an even more severe problem, exposures in these two major African cities are greater than those typical in European and North American cities.
- In terms of burden of disease estimates, VOCs should not be prioritized over PM2.5, but for air quality policy in the two cities, targeted VOC sampling such as that in this study can reveal a wealth of information regarding air pollution sources and determining the photo-chemical age of air masses in complex urban environments and providing evidence to motivate targeted interventions to improve air quality.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aghedo, A.M.; Schultz, M.G.; Rast, S. The influence of African air pollution on regional and global tropospheric ozone. Atmos. Chem. Phys. Discuss. 2007, 7, 1193–1212. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.G.; Heil, A.; Hoelzemann, J.; Spessa, A.; Thonicke, K.; Goldammer, J.G.; Held, A.C.; Pereira, J.M.C.; Bolscher, M.V.H. Global wildland fire emissions from 1960 to 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Lamancusa, C.; Wagstrom, K. Global transport of dust emitted from different regions of the Sahara. Atmos. Environ. 2019, 214, 116734. [Google Scholar] [CrossRef]
- Monks, P.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change—Global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Anenberg, S.C.; Miller, J.; Henze, D.K.; Minjares, R.; Achakulwisut, P. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environ. Res. Lett. 2019, 14, 094012. [Google Scholar] [CrossRef]
- Gaita, S.M.; Boman, J.; Gatari, M.J.; Wagner, A.; Jonsson, S.K. Characterization of Size-Fractionated Particulate Matter and Deposition Fractions in Human Respiratory System in a Typical African City: Nairobi, Kenya. Aerosol Air Qual. Res. 2016, 16, 2378–2385. [Google Scholar] [CrossRef] [Green Version]
- Gatari, M.J.; Boman, J.; Wagner, A. Characterization of aerosol particles at an industrial background site in Nairobi, Kenya. X-Ray Spectrom. 2009, 38, 37–44. [Google Scholar] [CrossRef]
- Ngo, N.S.; Gatari, M.; Yan, B.; Chillrud, S.N.; Bouhamam, K.; Kinney, P.L. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya. Atmos. Environ. 2015, 111, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, F.D.; Gatari, M.; Ng’Ang’A, D.; Poynter, A.; Blake, R. Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors. Atmos. Chem. Phys. Discuss. 2018, 18, 15403–15418. [Google Scholar] [CrossRef] [Green Version]
- Amegah, A.K.; Agyei-Mensah, S. Urban air pollution in Sub-Saharan Africa: Time for action. Environ. Pollut. 2017, 220, 738–743. [Google Scholar] [CrossRef]
- United Nations. Revision of World Urbanization Prospects; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Balde, A.B.; Bertollini, R.; Bose O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- UNICEF. Silent Suffocation in Africa; UNICEF: New York, NY, USA, 2019. [Google Scholar]
- WHO. Burden of Disease from Ambient Air Pollution for 2012; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Assamoi, E.-M.; Liousse, C. A new inventory for two-wheel vehicle emissions in West Africa for 2002. Atmos. Environ. 2010, 44, 3985–3996. [Google Scholar] [CrossRef]
- Efe, S.I.; Efe, A.T. Spatial distribution of particulate matter (PM10) in Warri metropolis, Nigeria. Environment 2008, 28, 385–394. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ipinmoroti, M.O.; Chirenje, T. Environmental pollution in Africa. Environ. Dev. Sustain. 2018, 20, 41–73. [Google Scholar] [CrossRef]
- Kinney, P.L.; Gichuru, M.G.; Volavka-Close, N.; Ngo, N.; Ndiba, P.K.; Law, A.; Gachanja, A.; Gaita, S.M.; Chillrud, S.N.; Sclar, E. Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environ. Sci. Policy 2011, 14, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Naidja, L.; Ali-Khodja, H.; Khardi, S. Sources and levels of particulate matter in North African and Sub-Saharan cities: A literature review. Environ. Sci. Pollut. Res. 2018, 25, 12303–12328. [Google Scholar] [CrossRef] [PubMed]
- Odhiambo, G.O.; Kinyua, A.M.; Gatebe, C.K.; Awange, J. Motor vehicles air pollution in Nairobi, Kenya. Res. J. Environ. Earth Sci. 2010, 2, 178–187. [Google Scholar]
- UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- Van Vliet, E.D.S.; Kinney, P.L. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: New evidence from Nairobi, Kenya. Environ. Res. Lett. 2007, 2, 045028. [Google Scholar] [CrossRef]
- Croitoru, L.; Chang, J.C.; Kelly, A. The Cost of Air Pollution in Lagos (English); World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- Hopkins, J.R.; Evans, M.J.; Lee, J.D.; Lewis, A.C.; Marsham, J.H.; McQuaid, J.B.; Parker, D.J.; Stewart, D.J.; Reeves, C.E.; Purvis, R.M. Direct estimates of emissions from the megacity of Lagos. Atmos. Chem. Phys. Discuss. 2009, 9, 8471–8477. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.M.; Hourcade, R.; Lefebvre, B.; Pilot, E. A Scoping Review on Air Quality Monitoring, Policy and Health in West African Cities. Int. J. Environ. Res. Public Health 2020, 17, 9151. [Google Scholar] [CrossRef] [PubMed]
- Obanya, H.E.; Amaeze, N.H.; Togunde, O.; Otitoloju, A. Air Pollution Monitoring Around Residential and Transportation Sector Locations in Lagos Mainland. J. Health Pollut. 2018, 8, 180903. [Google Scholar] [CrossRef]
- Clark, S.N.; Alli, A.S.; Brauer, M.; Ezzati, M.; Baumgartner, J.; Toledano, M.B.; Hughes, A.F.; Nimo, J.; Moses, J.B.; Terkpertey, S.; et al. High-resolution spatiotemporal measurement of air and environmental noise pollution in Sub-Saharan African cities: Pathways to Equitable Health Cities Study protocol for Accra, Ghana. BMJ Open 2020, 10, e035798. [Google Scholar] [CrossRef]
- Nkosi, V.; Wichmann, J.; Voyi, K. Indoor and outdoor PM10 levels at schools located near mine dumps in Gauteng and North West Provinces, South Africa. BMC Public Health 2017, 17, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obioh, I.; Ezeh, G.; Abiye, O.; Alpha, A.; Ojo, E.; Ganiyu, A. Atmospheric particulate matter in Nigerian megacities. Toxicol. Environ. Chem. 2013, 95, 379–385. [Google Scholar] [CrossRef]
- Doumbia, M.; Toure, N.E.; Silue, S.; Yoboue, V.; Diedhiou, A.; Hauhouot, C. Emissions from the Road Traffic of West African Cities: Assessment of Vehicle Fleet and Fuel Consumption. Energies 2018, 11, 2300. [Google Scholar] [CrossRef] [Green Version]
- Gatari, M.J.; Boman, J. Black carbon and total carbon measurements at urban and rural sites in Kenya, East Africa. Atmos. Environ. 2003, 37, 1149–1154. [Google Scholar] [CrossRef]
- Baumbach, G.; Vogt, U.; Hein, K.; Oluwole, A.; Ogunsola, O.; Olaniyi, H.; Akeredolu, F. Air pollution in a large tropical city with a high traffic density—Results of measurements in Lagos, Nigeria. Sci. Total Environ. 1995, 169, 25–31. [Google Scholar] [CrossRef]
- Olajire, A.; Azeez, L. Source apportionment and ozone formation potential of volatile organic compounds in Lagos (Nigeria). Chem. Ecol. 2013, 30, 156–168. [Google Scholar] [CrossRef]
- Bailey, J.; Schmidt, B.; Williams, M. Speciated hydrocarbon emissions from vehicles operated over the normal speed range on the road. Atmos. Environ. Part A Gen. Top. 1990, 24, 43–52. [Google Scholar] [CrossRef]
- Inomata, S.; Tanimoto, H.; Fujitani, Y.; Sekimoto, K.; Sato, K.; Fushimi, A.; Yamada, H.; Hori, S.; Kumazawa, Y.; Shimoto, A.; et al. On-line measurements of gaseous nitro-organic compounds in diesel vehicle exhaust by pro-ton-transfer-reaction mass spectrometry. Atmos. Environ. 2013, 73, 195–203. [Google Scholar] [CrossRef]
- Lloyd, A.C.; Cackette, T.A. Diesel Engines: Environmental Impact and Control. J. Air Waste Manag. Assoc. 2001, 51, 809–847. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Misawa, K.; Suzuki, D.; Tanaka, K.; Matsumoto, J.; Fujii, M.; Tanaka, K. Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions. Proc. Combust. Inst. 2011, 33, 2895–2902. [Google Scholar] [CrossRef]
- Huang, H.; Hu, H.; Zhang, J.; Liu, X. Characteristics of volatile organic compounds from vehicle emissions through on–road test in Wuhan, China. Environ. Res. 2020, 188, 109802. [Google Scholar] [CrossRef]
- Krzyżanowski, M.; Kuna-Dibbert, B.; Schneider, J. Health Effects of Transport-Related Air Pollution; World Health Organization Europe: Geneva, Switzerland, 2005. [Google Scholar]
- Keyte, I.J.; Albinet, A.; Harrison, R.M. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. Sci. Total Environ. 2016, 566, 1131–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrone, M.G.; Carbone, C.; Faedo, D.; Ferrero, L.; Maggioni, A.; Sangiorgi, G.; Bolzacchini, E. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmos. Environ. 2014, 82, 391–400. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Q.; Li, X.; Tian, F.; Qiao, X.; Chen, J.; Ding, W. Profile and source apportionment of volatile organic compounds from a complex industrial park. Environ. Sci. Process. Impacts 2019, 21, 9–18. [Google Scholar] [CrossRef]
- Wang, H.; Lou, S.; Huang, C.; Qiao, L.; Tang, X.; Chen, C.; Zeng, L.; Wang, Q.; Zhou, M.; Lu, S.; et al. Source Profiles of Volatile Organic Compounds from Biomass Burning in Yangtze River Delta, China. Aerosol Air Qual. Res. 2014, 14, 818–828. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. Discuss. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Norris, C.; Johnson, K.; Cui, X.; Sun, J.; Teng, Y.; Tian, E.; Xu, W.; Li, Z.; Mo, J.; et al. Toxic volatile organic compounds in 20 homes in Shanghai: Concentrations, inhalation health risks, and the impacts of household air cleaning. Build. Environ. 2019, 157, 309–318. [Google Scholar] [CrossRef]
- Public Heath England. Indoor Air Quality Guidelines for selected Volatile Organic Compounds (VOCs) in the UK; Public Heath England: London, UK, 2019. [Google Scholar]
- Davidson, C.J.; Hannigan, J.H.; Bowen, S.E. Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): Toward an environmental exposure model. Environ. Toxicol. Pharmacol. 2021, 81, 103518. [Google Scholar] [CrossRef]
- Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Fazlzadeh, M.; Sorooshian, A.; Tabatabaee, H.R.; Miri, M.; Baghani, A.N.; Delikhoon, M.; Mahvi, A.H.; Rashidi, M. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol. Environ. Saf. 2018, 155, 133–143. [Google Scholar] [CrossRef]
- Zhou, J.; You, Y.; Bai, Z.; Hu, Y.; Zhang, J.; Zhang, N. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci. Total Environ. 2011, 409, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, M.; Dioni, L.; Bonzini, M.; Pesatori, A.C.; Fustinoni, S.; Cavallo, D.; Carugno, M.; Albetti, B.; Marinelli, B.; Schwartz, J.; et al. Association between leukocyte telomere shortening and exposure to traffic pollution: A cross-sectional study on traffic officers and indoor office workers. Environ. Health 2009, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, M.; Autrup, H.; Møller, P.; Hertel, O.; Jensen, S.S.; Vinzents, P.; Knudsen, L.E.; Loft, S. Linking exposure to environmental pollutants with biological effects. Mutat. Res. Mutat. Res. 2003, 544, 255–271. [Google Scholar] [CrossRef]
- Blumberg, L. Comprehensive two-dimensional gas chromatography: Metrics, potentials, limits. J. Chromatogr. A 2003, 985, 29–38. [Google Scholar] [CrossRef]
- Lewis, A.; Carslaw, N.; Marriott, P.; Kinghorn, R.M.; Morrison, P.; Lee, A.L.; Bartle, K.D.; Pilling, M.J. A larger pool of ozone-forming carbon compounds in urban atmospheres. Nat. Cell Biol. 2000, 405, 778–781. [Google Scholar] [CrossRef]
- Kenya National Bureau of Statistics. Kenya Population and Housing Census Volume I: Population by County and Sub-County; Kenya National Bureau of Statistics: Nairobi, Kenya, 2019. [Google Scholar]
- Zlotnik, H. World Urbanization: Trends and Prospects. In New Forms of Urbanization; Routledge: London, UK, 2017; pp. 43–64. [Google Scholar]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, G.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metab. Off. J. Metab. Soc. 2007, 3, 211–221. [Google Scholar]
- Wilde, M.J.; Cordell, R.; Salman, D.; Zhao, B.; Ibrahim, W.; Bryant, L.; Ruszkiewicz, D.; Singapuri, A.; Free, R.C.; Gaillard, E.A.; et al. Breath analysis by two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection—Method optimisation and integration within a large-scale clinical study. J. Chromatogr. A 2019, 1594, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ho, S.S.H.; Xue, Y.; Huang, Y.; Wang, L.; Cheng, Y.; Dai, W.; Zhong, H.; Cao, J.; Lee, S.-C. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmos. Environ. 2017, 161, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.H.; Lu, Y.T.; Chung, I.I.; Chiang, H.L. Traffic-Related Airborne VOC Profiles Variation on Road Sites and Residential Area within a Microscale in Urban Area in Southern Taiwan. Atmosphere 2020, 11, 1015. [Google Scholar] [CrossRef]
- Do, D.H.; Van Langenhove, H.; Walgraeve, C.; Hayleeyesus, S.F.; De Wispelaere, P.; Dewulf, J.; Demeestere, K. Volatile organic compounds in an urban environment: A comparison among Belgium, Vietnam and Ethiopia. Int. J. Environ. Anal. Chem. 2013, 93, 298–314. [Google Scholar] [CrossRef]
- Srivastava, A.; Joseph, A.; Patil, S.; More, A.; Dixit, R. Air toxics in ambient air of Delhi. Atmos. Environ. 2005, 39, 59–71. [Google Scholar] [CrossRef]
- Dobslaw, D.; Engesser, K.-H.; Störk, H.; Gerl, T. Low-cost process for emission abatement of biogas internal combustion engines. J. Clean. Prod. 2019, 227, 1079–1092. [Google Scholar] [CrossRef]
- Huang, Y.; Ling, Z.H.; Lee, S.C.; Ho, S.S.H.; Cao, J.J.; Blake, D.R.; Cheng, Y.; Lai, S.; Ho, K.F.; Gao, Y.; et al. Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies. Atmos. Environ. 2015, 122, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Chin, J.-Y.; Batterman, S.A. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling. Chemosphere 2012, 86, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Doumbia, E.H.T.; Liousse, C.; Galy-Lacaux, C.; Ndiaye, S.A.; Diop, B.; Ouafo, M.; Assamoi, E.M.; Gardrat, E.; Castera, P.; Rosset, R.; et al. Real time black carbon measurements in West and Central Africa urban sites. Atmos. Environ. 2012, 54, 529–537. [Google Scholar] [CrossRef]
- Mbandi, A.M.; Böhnke, J.R.; Schwela, D.; Vallack, H.; Ashmore, M.R.; Emberson, L. Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya. Energies 2019, 12, 1177. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- UNEP. Used Vehicles and the Environment Global Overview of Used Light Vehicles—Flow, Scale and Regulation; UNEP: Blackwell, UK, 2020. [Google Scholar]
- Guo, H.; Ling, Z.; Cheung, K.; Wang, D.; Simpson, I.; Blake, D. Acetone in the atmosphere of Hong Kong: Abundance, sources and photochemical precursors. Atmos. Environ. 2013, 65, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J.; Field, B.D.; Jin, E.M.; Bey, I.; Li, Q.; Logan, J.A.; Yantosca, R.M.; Singh, H.B. Atmospheric budget of acetone. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Singh, H.B.; O’Hara, D.; Herlth, D.; Sachse, W.; Blake, D.R.; Bradshaw, J.D.; Kanakidou, M.; Crutzen, P.J. Acetone in the atmosphere: Distribution, sources, and sinks. J. Geophys. Res. Space Phys. 1994, 99, 1805–1819. [Google Scholar] [CrossRef]
- Ohimain, E.I. Emerging bio-ethanol projects in Nigeria: Their opportunities and challenges. Energy Policy 2010, 38, 7161–7168. [Google Scholar] [CrossRef]
- Felix, J.D.; Willey, J.D.; Thomas, R.K.; Mullaugh, K.M.; Avery, G.B.; Kieber, R.J.; Mead, R.N.; Helms, J.; Giubbina, F.F.; Campos, M.L.A.M.; et al. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate. Glob. Biogeochem. Cycles 2017, 31, 348–356. [Google Scholar] [CrossRef]
- Millet, D.B.; Apel, E.; Henze, D.K.; Hill, J.; Marshall, J.D.; Singh, H.B.; Tessum, C.W. Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use. Environ. Sci. Technol. 2012, 46, 8484–8492. [Google Scholar] [CrossRef] [PubMed]
- Ohimain, E.I. A review of the Nigerian biofuel policy and incentives (2007). Renew. Sustain. Energy Rev. 2013, 22, 246–256. [Google Scholar] [CrossRef]
- Ozier, A.; Charron, D.; Chung, S.; Sarma, V.; Dutta, A.; Jagoe, K.; Obueh, J.; Stokes, H.; Munangagwa, C.L.; Johnson, M.; et al. Building a consumer market for ethanol-methanol cooking fuel in Lagos, Nigeria. Energy Sustain. Dev. 2018, 46, 65–70. [Google Scholar] [CrossRef]
- Yáñez-Serrano, A.M.; Nölscher, A.C.; Bourtsoukidis, E.; Derstroff, B.; Zannoni, N.; Gros, V.; Lanza, M.; Brito, J.; Noe, S.M.; House, E.; et al. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. Atmos. Chem. Phys. Discuss. 2016, 16, 10965–10984. [Google Scholar] [CrossRef] [Green Version]
- Boutekedjiret, C.; Vian, M.A.; Chemat, F. Terpenes as Green Solvents for Natural Products Extraction; Chemat, F., Vian, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–219. [Google Scholar]
- Alghamdi, M.A.; Khoder, M.; Abdelmaksoud, A.S.; Harrison, R.M.; Hussein, T.; Lihavainen, H.; Al-Jeelani, H.; Goknil, M.H.; Shabbaj, I.I.; Almehmadi, F.M.; et al. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban back-ground atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual. Atmos. Health 2014, 7, 467–480. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Z.; Du, Y.; Guo, H. Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China. Atmos. Environ. 2000, 34, 4459–4466. [Google Scholar] [CrossRef]
- Buczynska, A.J.; Krata, A.; Stranger, M.; Godoi, A.F.L.; Kontozova-Deutsch, V.; Bencs, L.; Naveau, I.; Roekens, E.; Van Grieken, R. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos. Environ. 2009, 43, 311–318. [Google Scholar] [CrossRef]
- Miller, L.; Xu, X.; Wheeler, A.; Atari, D.O.; Grgicak-Mannion, A.; Luginaah, I. Spatial Variability and Application of Ratios between BTEX in Two Canadian Cities. Sci. World J. 2011, 11, 2536–2549. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, G.-Y.; Fu, J.-M.; Chan, C.-Y.; Lee, S.-C.; Chan, L.Y.; Wang, Z.-S. Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People’s Republic of China. Atmos. Environ. 2002, 36, 5141–5148. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Simpson, I.J.; Zou, S.; Rowland, F.S.; Blake, D.R. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmos. Environ. 2008, 42, 4393–4408. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.; Hanai, Y.; Masunaga, S. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual. Atmos. Health 2010, 3, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Jost, C.; Sprung, D.; Andreae, M.O.; McQuaid, J.B.; Barjat, H.; Trentmann, J. Trace gas chemistry in a young biomass burning plume over Namibia: Observations and model simulations. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 3. C1−C29 Organic Compounds from Fireplace Combustion of Wood. Environ. Sci. Technol. 2001, 35, 1716–1728. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Hayman, G.D. Photochemical ozone creation potentials for oxygenated volatile organic compounds: Sensi-tivity to variations in kinetic and mechanistic parameters. Atmos. Environ. 1999, 33, 1275–1293. [Google Scholar] [CrossRef]
- Monks, P.S. Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev. 2005, 34, 376–395. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. Calif. Air Resour. Board Contract 2009, 2009, 339. [Google Scholar]
- Hwa, M.-Y.; Hsieh, C.-C.; Wu, T.-C.; Chang, L.-F.W. Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmos. Environ. 2002, 36, 1993–2002. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Y.; Liu, J.; Mellouki, A. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 2012, 24, 124–130. [Google Scholar] [CrossRef]
- Olumayede, E.G. Atmospheric Volatile Organic Compounds and Ozone Creation Potential in an Urban Center of Southern Nigeria. Int. J. Atmos. Sci. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lo, J.-G.; Wang, J.-L. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel. Atmos. Environ. 2001, 35, 6201–6211. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Zhu, R.; Zhang, R.; Zu, L.; Wang, Y.; Bao, X. On-road tailpipe emission characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled vehicles. Atmos. Environ. 2020, 223, 117294. [Google Scholar] [CrossRef]
- Harrison, R.M. Principles of Environmental Chemistry; RSC Publishing: Cambridge, UK, 2007. [Google Scholar]
- EPA. Tables of Maximum Incremental Reactivity (MIR) Values; EPA: Washington, DC, USA, 2001. [Google Scholar]
- Derwent, R.G.; Jenkin, M.E.; Saunders, S.M. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 1996, 30, 181–199. [Google Scholar] [CrossRef]
- Duarte-Davidson, R.; Courage, C.; Rushton, L.; Levy, L. Benzene in the environment: An assessment of the potential risks to the health of the population. Occup. Environ. Med. 2001, 58, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Benzene. In Air Quality Guidelines for Europe, 2nd ed.; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Yassaa, N.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P. Isomeric analysis of BTEXs in the atmosphere using β-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry. Chemosphere 2006, 63, 502–508. [Google Scholar] [CrossRef]
- Zhang, H.R.; Eddings, E.G.; Sarofim, A.F. Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities. Environ. Sci. Technol. 2008, 42, 5615–5621. [Google Scholar] [CrossRef] [PubMed]
- Harley, R.A.; Hooper, D.S.; Kean, A.J.; Kirchstetter, T.W.; Hesson, J.M.; Balberan, N.T.; Stevenson, E.D.; Kendall, G.R. Effects of Reformulated Gasoline and Motor Vehicle Fleet Turnover on Emissions and Ambient Concen-trations of Benzene. Environ. Sci. Technol. 2006, 40, 5084–5088. [Google Scholar] [CrossRef]
- Von Schneidemesser, E.; Monks, P.S.; Plass-Duelmer, C. Global comparison of VOC and CO observations in urban areas. Atmos. Environ. 2010, 44, 5053–5064. [Google Scholar] [CrossRef]
- Warneke, C.; De Gouw, J.A.; Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Atlas, E.; Blake, D.; Trainer, M.; Parrish, D.D. Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Agbo, K.E.; Walgraeve, C.; Eze, J.I.; Ugwoke, P.E.; Ukoha, P.O.; Van Langenhove, H. A review on ambient and indoor air pollution status in Africa. Atmos. Pollut. Res. 2021, 12, 243–260. [Google Scholar] [CrossRef]
- Liu, J.; Mu, Y.; Zhang, Y.; Zhang, Z.; Wang, X.; Liu, Y.; Sun, Z. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing. Sci. Total Environ. 2009, 408, 109–116. [Google Scholar] [CrossRef]
- Dutta, C.; Som, D.; Chatterjee, A.; Mukherjee, A.K.; Jana, T.K.; Sen, S. Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environ. Monit. Assess. 2008, 148, 97–107. [Google Scholar] [CrossRef]
- Nguyen, V.T.L.; Dung, N.T.; Yoneda, M.; Vinh, T.H. Preliminary assessment of BTEX concentrations indoor and outdoor air in residential homes in Hanoi, Vietnam. Vietnam J. Sic. Technol. 2017, 55, 78–84. [Google Scholar]
- Rowbotham, A.L.; Levy, L.S.; Shuker, L.K. Chromium in the environment: An evaluation of exposure of the UK general population and possible adverse health effects. J. Toxicol. Environ. Health Part B Crit. Rev. 2000, 3, 145–178. [Google Scholar]
- Salau, A.; Lawanson, T.; Odumbaku, O. Amoebic Urbanization in Nigerian Cities (The Case of Lagos and Ota). Int. J. Archit. Urban Dev. 2013, 3, 19–26. [Google Scholar]
- Salon, D.; Gulyani, S. Commuting in Urban Kenya: Unpacking Travel Demand in Large and Small Kenyan Cities. Sustainability 2019, 11, 3823. [Google Scholar] [CrossRef] [Green Version]
- DEFRA. Air Pollution in the UK 2019; DEFRA: London, UK, 2020. [Google Scholar]
- IEH. IEH Report on Benzene in the Environment: An Evaluation of Exposure of the UK General Population and Possible Adverse Health Effects; IEH Report R12; Institute for Environment and Health: Leicester, UK, 1999. [Google Scholar]
- Ezzati, M.; Kammen, D.M. Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: An exposure-response study. Lancet 2001, 358, 619–624. [Google Scholar] [CrossRef]
Site Location | Code | Site Designation | Description | Coordinates (Lat/lon) |
---|---|---|---|---|
Nairobi | ||||
Waiyaki Way | W1&2 | Roadside | Four lane highway (in each direction) to Mombasa average 3400 cars/hour at sampling times | –1.28095, 36.81481 –1.28024, 36.81449 |
University Way | UR1&2 | Roadside | Three lane highway (in each direction) running past university 2700 cars/hour at sampling times | –1.28151, 36.81595 –1.28116, 36.81670 |
Roundabout on Waiyaki Way | R | Roadside | Roundabout joining University Way and Waiyaki Way | –1.28144, 36.81509 |
University of Nairobi Campus | INS | Urban Background | 200 m from University Way, 400 m from Waiyaki Way, >60 m from nearest minor road | –1.27805, 36.81764 |
Total | 6 | |||
Lagos | ||||
Ogba | OGB 1&2 | Urban background/residential | Residential area 20 m from road with traffic of 800 vehicles/hour | 6.62558, 3.33510 |
Ikeja | IKE1 | Urban background/residential | Mainly residential area >25 m from minor road with ~500 vehicles/hour | 6.44600, 3.42389 |
IKE2 | Residential area >50 m from four lane urban road traversing residential and commercial catchments with traffic of 1450 vehicles/hour | 6.44371, 3.43208 | ||
Victoria Island | VIS1 VIS2 | Urban background/residential | Residential area >50m from road with ~800 vehicles/hour Residential area >50 m from roundabout of two four lane roads | 6.43037, 3.43109 6.43072, 3.42497 |
University of Lagos | UNI | Urban Background | >25 m nearest road intersection of three urban roads beside a mini open market and abattoir with traffic of 1150 vehicles/hour | 6.54659, 3.39620 |
Oshodi | OSH 1&2 | Roadside/commercial | On major route Oshodi–Oworonshoki Express way. Bus Terminal and commercial activities. Traffic of about 2800 vehicles/hour. | 6.55608, 3.35266 6.55426, 3.36280 |
Iyana Ipaja | IYA 1&2 | Roadside/commercial | Next to six lane highway linking Lagos Eastern suburbs to Lagos Island with traffic of more than 5400 vehicles/hour. | 6.54524, 3.39910 6.54533, 3.39850 |
Mushin | MUS 1&2 | Roadside | Four lane urban road traversing residential and commercial areas | 6.52646, 3.35546 |
Obalende | OBA 1&2 | Roadside/commercial | Four lane urban road linking Lagos Island and Victoria Island with traffic of 3800 vehicle/hour | 6.44845, 3.40588 |
Ojota | OJO1&2 | Roadside/commercial | Six lane busy inter-state exchange road with traffic of 5800 vehicles/hour and road with 3200 vehicles/hour | 6.58721, 3.37997 6.58843, 3.37945 |
Yaba | YAB 1&2 | Roadside/commercial | Road with traffic of 3200 vehicles/hour at peak period. | 6.51169, 3.37097 |
Ojuelegba | OJU 1 &2 | Roadside/commercial | Intersection for major four lane urban road with traffic of 4800 vehicle/hour | 6.50980, 3.36422 6.50972, 3.36364 |
Total | 22 |
Concentration (µgm−3) | ||||
---|---|---|---|---|
Nairobi | Lagos | |||
Roadside (µgm−3) | Urban Background (µgm−3) | Roadside/Commercial (µgm−3) | Urban Background (µgm−3) | |
1,2-dichloro propane | ND | ND | ND | ND |
1-butanol | ND | ND | ND | ND |
1-propanol | ND | ND | 0.75 ± 1.22 | 0.31 ± 0.24 |
2-butanone | 2.77 ± 0.28 | 2.30 ± 0.29 | 12.24 ± 4.54 | 2.31 ± 1.21 |
2-ethyltoluene | 2.76 ± 1.08 | 0.37 ± 0.17 | 2.70 ± 1.85 | 0.24 ± 0.16 |
2-propanol | 0.06 ± 0.02 | ND | ND | ND |
3-ethyltoluene | 8.87 ± 3.60 | 0.91 ± 0.39 | 7.77 ± 4.43 | 1.14 ± 0.51 |
4-ethyltoluene | 1.89 ± 0.74 | 0.31 ± 0.13 | 2.94 ± 1.87 | 0.47 ± 0.30 |
4-methyl-2-pentanone | 0.44 ± 0.22 | 0.20 ± 0.03 | ND | ND |
Acenaphthene | 0.06 ± 0.01 | 0.06 ± 0.14 | 0.03 ± 0.02 | 0.01 ± 0.01 |
Acenaphthylene | 0.09 ± 0.07 | 0.02 ± 0.06 | 0.06 ± 0.04 | 0.01 ± 0.00 |
Acetone | 9.39 ± 0.88 | 10.4 ± 1.59 | 5.34 ± 2.35 | 3.95 ± 1.83 |
Alpha pinene | 0.33 ± 0.11 | 0.1 ± 0.17 | 0.12 ± 0.08 | 0.05 ± 0.01 |
Benzene | 21.60 ± 7.09 | 4.95 ± 1.74 | 24.23 ± 7.29 | 4.20 ± 2.20 |
Benzene, 1,2,3-trimethyl- | 3.77 ± 1.53 | 0.38 ± 0.25 | 2.27 ± 1.65 | 0.18 ± 0.13 |
Benzene, 1,2,4-trimethyl- | 12.24 ± 5.02 | 1.22 ± 0.58 | 9.17 ± 5.26 | 1.03 ± 0.65 |
Benzene, 1,3,5-trimethyl- | 3.03 ± 1.19 | 0.31 ± 0.18 | 2.74 ± 1.98 | 0.26 ± 0.16 |
Benzene, 1,4-dichloro- | 0.74 ± 0.42 | 1.03 ± 0.78 | 0.29 ± 0.20 | 0.14 ± 0.19 |
Benzophenone | 0.51 ± 0.07 | 0.45 ± 0.20 | 0.33 ± 0.34 | 0.27 ± 0.22 |
Beta pinene | 0.44 ± 0.10 | 0.20 ± 0.15 | ND | ND |
Butane, 2,2-dimethyl- | 8.13 ± 2.88 | 0.82 ± 0.44 | 12.88 ± 8.80 | 12.73 ± 13.29 |
Butane, 2-methyl- | 39.89 ± 11.52 | 4.34 ± 1.95 | 53.15 ± 13.78 | 15.38 ± 6.15 |
Butyl acetate | ND | ND | ND | ND |
Carbon tetrachloride | ND | ND | ND | ND |
Chloroform | ND | ND | ND | ND |
Cyclohexane, methyl- | 2.75 ± 1.14 | 0.25 ± 0.16 | 5.22 ± 2.78 | 0.74 ± 0.36 |
Cyclopentane, methyl- | 7.54 ± 2.95 | 1.48 ± 1.00 | 27.69 ± 13.15 | 4.26 ± 2.15 |
Cyclopropane, 1,2-dimethyl-, trans- | 6.99 ± 2.27 | 0.56 ± 0.49 | 10.13 ± 7.79 | 0.48 ± 0.22 |
Decanal | 2.00 ± 0.53 | 2.30 ± 1.05 | 1.90 ± 0.33 | 1.66 ± 0.43 |
Decane | 1.61 ± 0.21 | 1.02 ± 0.25 | 1.90 ± 0.33 | 1.66 ± 0.43 |
Dibenzofuran | 0.17 ± 0.05 | 0.45 ± 0.49 | 0.13 ± 0.09 | 0.05 ± 0.03 |
Dodecane | 0.92 ± 0.16 | 0.27 ± 0.10 | 1.25 ± 1.18 | 0.25 ± 0.10 |
Durene | 1.61 ± 0.64 | 0.15 ± 0.09 | 0.63 ± 0.54 | 0.01 ± 0.02 |
Eicosane | 0.38 ± 0.10 | 0.27 ± 0.28 | 0.10 ± 0.06 | 0.04 ± 0.05 |
Ethane, 1,1,1-trichloro | ND | ND | ND | ND |
Ethane, 1,2-dichloro- | ND | ND | 1.04 ± 0.59 | 0.52 ± 0.19 |
Ethanol | 3.59 ± 4.60 | 1.18 ± 0.11 | 26.19 ± 22.43 | 10.76 ± 12.96 |
Ethyl acetate | ND | ND | 3.22 ± 2.40 | 2.45 ± 1.58 |
Ethylbenzene | 8.38 ± 3.25 | 1.10 ± 0.64 | 15.13 ± 6.71 | 1.84 ± 1.13 |
Fluorene | 0.03 ± 0.04 | 0.09 ± 0.22 | 0.04 ± 0.02 | 0.01 ± 0.00 |
Heptadecane | 2.90 ± 0.51 | 2.08 ± 0.95 | 0.27 ± 0.15 | 0.07 ± 0.04 |
Heptane | 9.34 ± 3.89 | 1.06 ± 0.50 | 12.67 ± 6.61 | 1.74 ± 0.75 |
Hexadecane | 2.01 ± 0.45 | 1.00 ± 0.34 | 0.33 ± 0.19 | 0.08 ± 0.05 |
Hexane | 70.09 ± 22.46 | 36.48 ± 9.74 | 57.27 ± 22.16 | 10.81 ± 4.15 |
Hexane, 2 methyl- | 11.37 ± 3.82 | 1.26 ± 0.39 | 5.87 ± 2.93 | 1.18 ± 0.49 |
Hexane, 3-methyl- | 8.07 ± 3.30 | 0.68 ± 0.41 | 0.92 ± 0.46 | 0.13 ± 0.06 |
Limonene | 0.47 ± 0.10 | 0.37 ± 0.11 | 6.24 ± 8.72 | 0.24 ± 0.15 |
m/p-xylene | 14.73 ± 5.88 | 1.66 ± 1.06 | 25.01 ± 11.96 | 4.26 ± 1.71 |
Methane, dibromochloro- | ND | ND | ND | ND |
Methylene chloride | 0.05 ± 0.02 | ND | 4.26 ± 5.81 | 0.99 ± 0.78 |
Naphthalene | 1.51 ± 0.48 | 0.64 ± 0.31 | 3.6 ± 1.49 | 0.83 ± 0.54 |
Naphthalene, 1-methyl- | 0.48 ± 0.13 | 0.38 ± 0.30 | 0.49 ± 0.27 | 0.07 ± 0.02 |
Naphthalene, 2-methyl- | 0.33 ± 0.08 | 0.23 ± 0.14 | 0.95 ± 1.15 | 0.18 ± 0.11 |
Nonadecane | 0.77 ± 0.19 | 0.53 ± 0.37 | 0.07 ± 0.04 | 0.02 ± 0.03 |
Nonanal | 1.85 ± 0.35 | 2.98 ± 2.45 | 2.92 ± 1.51 | 2.32 ± 1.81 |
Nonane | 0.85 ± 0.22 | 0.37 ± 0.24 | 4.54 ± 2.72 | 1.24 ± 0.25 |
Octadecane | 1.42 ± 0.29 | 1.01 ± 0.54 | 0.17 ± 0.09 | 0.05 ± 0.04 |
Octane | 2.06 ± 0.78 | 0.55 ± 0.21 | 5.76 ± 3.27 | 0.94 ± 0.28 |
o-xylene | 10.72 ± 4.33 | 1.15 ± 0.72 | 8.86 ± 5.08 | 1.54 ± 0.47 |
pentadecane | 1.39 ± 0.38 | 0.43 ± 0.12 | 0.53 ± 0.49 | 0.09 ± 0.04 |
Pentane | 54.18 ± 16.86 | 7.29 ± 3.03 | 90.38 ± 17.69 | 32.93 ± 11.8 |
Pentane, 2,2,4-trimethyl- | 7.55 ± 3.24 | 0.51 ± 0.20 | 1.79 ± 0.97 | 0.32 ± 0.10 |
Pentane, 2,4-dimethyl- | ND | ND | ND | ND |
Pentane, 2-methyl- | 33.37 ± 9.14 | 17.94 ± 18.01 | 10.36 ± 4.40 | 1.73 ± 0.77 |
Pentane, 3-methyl- | 10.39 ± 3.84 | 1.14 ± 0.61 | 28.18 ± 14.11 | 4.03 ± 1.80 |
Phenanthrene | 14.67 ± 0.62 | 0.02 ± 0.02 | 0.24 ± 0.15 | 0.09 ± 0.05 |
Pyrene | 0.18 ± 0.09 | 0.23 ± 0.32 | 0.07 ± 0.02 | 0.03 ± 0.01 |
Styrene | 2.18 ± 0.75 | 0.54 ± 0.28 | 3.05 ± 2.16 | 0.36 ± 0.32 |
Tetrachloroethylene | ND | ND | 0.33 ± 0.60 | 0.16 ± 0.05 |
Tetradecane | 1.25 ± 0.27 | 0.48 ± 0.14 | 0.55 ± 0.66 | 0.02 ± 0.03 |
Toluene | 44.5 ± 17.14 | 5.94 ± 3.86 | 32.89 ± 8.27 | 9.10 ± 3.40 |
Trichloroethylene | 2.00 ± 0.26 | 1.64 ± 0.25 | ND | ND |
Tridecane | 1.00 ± 0.20 | 0.32 ± 0.08 | 1.17 ± 1.05 | 0.17 ± 0.06 |
Undecane | 1.24 ± 0.21 | 0.5 ± 0.20 | 1.77 ± 2.03 | 0.14 ± 0.20 |
Inhaled Dose (µg) | ||||||
---|---|---|---|---|---|---|
Nairobi | Lagos | |||||
Average Daily Commute Driving/Walking Roadside (1 h) | Working Outside in the Urban Background (8 h) | Working Roadside (8 h) | Average Daily Commute Driving (2.5 h) | Working Outside in the Urban Background (8 h) | Working Roadside (8 h) | |
B | 18 | 33 | 144 | 50 | 28 | 161 |
T | 38 | 39 | 297 | 69 | 61 | 219 |
E | 7 | 7 | 56 | 31 | 12 | 101 |
X | 12 | 11 | 98 | 52 | 29 | 167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordell, R.L.; Panchal, R.; Bernard, E.; Gatari, M.; Waiguru, E.; Ng’ang’a, M.; Nyang’aya, J.; Ogot, M.; Wilde, M.J.; Wyche, K.P.; et al. Volatile Organic Compound Composition of Urban Air in Nairobi, Kenya and Lagos, Nigeria. Atmosphere 2021, 12, 1329. https://doi.org/10.3390/atmos12101329
Cordell RL, Panchal R, Bernard E, Gatari M, Waiguru E, Ng’ang’a M, Nyang’aya J, Ogot M, Wilde MJ, Wyche KP, et al. Volatile Organic Compound Composition of Urban Air in Nairobi, Kenya and Lagos, Nigeria. Atmosphere. 2021; 12(10):1329. https://doi.org/10.3390/atmos12101329
Chicago/Turabian StyleCordell, Rebecca L., Rikesh Panchal, Emmanuel Bernard, Michael Gatari, Ezekiel Waiguru, Moses Ng’ang’a, James Nyang’aya, Madara Ogot, Michael J. Wilde, Kevin P. Wyche, and et al. 2021. "Volatile Organic Compound Composition of Urban Air in Nairobi, Kenya and Lagos, Nigeria" Atmosphere 12, no. 10: 1329. https://doi.org/10.3390/atmos12101329
APA StyleCordell, R. L., Panchal, R., Bernard, E., Gatari, M., Waiguru, E., Ng’ang’a, M., Nyang’aya, J., Ogot, M., Wilde, M. J., Wyche, K. P., Abayomi, A. A., Alani, R., Monks, P. S., & Vande Hey, J. D. (2021). Volatile Organic Compound Composition of Urban Air in Nairobi, Kenya and Lagos, Nigeria. Atmosphere, 12(10), 1329. https://doi.org/10.3390/atmos12101329