Investigation of Air Pollutants Related to the Vehicular Exhaust Emissions in the Kathmandu Valley, Nepal
Abstract
:1. Introduction
2. Methods
2.1. Sampling
2.2. Analysis
2.2.1. VOCs and Aldehydes
2.2.2. NO2 and NOx
2.2.3. SO2
2.2.4. NH3
2.3. Contribution Analysis in Three Types of Vehicles
2.4. Estimation of the Photochemical Ozone Production
3. Results and Discussion
3.1. Meteorological Characteristics
3.2. Characteristics of Air Pollutants
3.3. Air Pollutants Related to the Vehicular Exhaust Emissions
3.4. Ratio of Ethylene to Acetylene
3.5. Comparison to the Previous Studies
3.6. The VOCs Impact on Photochemical Ozone Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Kang, S.; Li, C.; Rupakheti, M.; Yan, F.; Li, Q.; Ji, Z.; Zhang, Q.; Luo, W.; Sillanpää, M. Characteristics and sources of polycyclic aromatic hydrocarbons in Atmos. aerosols in the Kathmandu Valley, Nepal. Sci. Total. Environ. 2015, 538, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakya, K.M.; Peltier, R.E.; Shrestha, H.; Byanju, R.M. Measurements of TSP, PM 10, PM 2.5, BC, and PM chemical composition from an urban residential location in Nepal. Atmos. Pollut. Res. 2017, 8, 1123–1131. [Google Scholar] [CrossRef]
- Regmi, R.P.; Kitada, T.; Maharjan, S.; Shrestha, S.; Shrestha, S.; Regmi, G. Wintertime Boundary Layer Evolution and Air Pollution Potential Over the Kathmandu Valley, Nepal. J. Geophys. Res. Atmos. 2019, 124, 4299–4325. [Google Scholar] [CrossRef]
- Quest Forum Pvt. Ltd. Air Quality Management Action Plan for Kathmandu Valley; Ministry of Population and Environment, Department of Environment: Kathmandu, Nepal, 2017. Available online: http://www.indiaenvironmentportal.org.in/content/446827/air-quality-management-action-plan-for-kathmandu-valley/ (accessed on 8 October 2021).
- Kim, B.M.; Park, J.-S.; Kim, S.-W.; Kim, H.; Jeon, H.; Cho, C.; Kim, J.-H.; Hong, S.; Rupakheti, M.; Panday, A.K.; et al. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal. Atmos. Environ. 2015, 123, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Shakya, K.M.; Rupakheti, M.; Shahi, A.; Maskey, R.; Pradhan, B.; Panday, A.; Puppala, S.P.; Lawrence, M.; Peltier, R.E. Near-road sampling of PM2. 5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal. Atmos. Chem. Phys. Discuss. 2017, 17, 6503–6516. [Google Scholar] [CrossRef] [Green Version]
- Putero, D.; Cristofanelli, P.; Marinoni, A.; Adhikary, B.; Duchi, R.; Shrestha, S.D.; Verza, G.P.; Landi, T.C.; Calzolari, F.; Busetto, M.; et al. Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal. Atmos. Chem. Phys. Discuss. 2015, 15, 13957–13971. [Google Scholar] [CrossRef] [Green Version]
- Aryal, R.K.; Lee, B.-K.; Karki, R.; Gurung, A.; Baral, B.; Byeon, S.-H. Dynamics of PM2.5 concentrations in Kathmandu Valley, Nepal. J. Hazard. Mater. 2009, 168, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Shakya, K.M.; Ziemba, L.D.; Griffin, R.J. Characteristics and Sources of Carbonaceous, Ionic, and Isotopic Species of Wintertime Atmos. Aerosols in Kathmandu Valley, Nepal. Aerosol Air Qual. Res. 2010, 10, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Gurung, A.; Bell, M.L. Exposure to airborne particulate matter in Kathmandu Valley, Nepal. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bhattarai, B.; Sapkota, B.; Gewali, M.; Kjeldstad, B. Black carbon aerosols variation in Kathmandu valley, Nepal. Atmos. Environ. 2012, 63, 282–288. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Christian, T.J.; Goetz, J.D.; Jayarathne, T.; Bhave, P.V.; Praveen, P.S.; Adhikari, S.; Maharjan, R.; DeCarlo, P.F.; Stone, E.A.; et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos. Chem. Phys. Discuss. 2016, 16, 11043–11081. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Jayarathne, T.; Simpson, I.J.; Werden, B.; Maben, J.; Gilbert, A.; Praveen, P.S.; Adhikari, S.; Panday, A.K.; Rupakheti, M.; et al. Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: Concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. Discuss. 2020, 20, 2927–2951. [Google Scholar] [CrossRef] [Green Version]
- Kondo, A.; Kaga, A.; Imamura, K.; Inoue, Y.; Sugisawa, M.; Shrestha, M.L.; Sapkota, B. Investigation of air pollution concen-tration in Kathmandu valley during winter season. J. Environ. Sci. 2005, 17, 1008–1013. [Google Scholar]
- Wang, M.; Li, S.; Zhu, R.; Zhang, R.; Zu, L.; Wang, Y.; Bao, X. On-road tailpipe emission characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled vehicles. Atmos. Environ. 2020, 223, 117294. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Shoji, K.; Bui, M.T.; Phạm, T.H.; Vu, T.A.; Ly, B.T.; Kajii, Y. Air quality study in Hanoi, Vietnam in 2015–2016 based on a one-year observation of NOx, O3, CO and a one-week observation of VOCs. Atmos. Pollut. Res. 2018, 9, 544–551. [Google Scholar] [CrossRef]
- Carter, W.P.L. Updated Chemical Mechanisms for Airshed Model Application, Revised Final Report to the California Air Resources Board. 2010. Available online: https://www.arb.ca.gov/regact/2009/mir2009/mirfinfro.pdf (accessed on 17 June 2020).
- Sharma, U.; Kajii, Y.; Akimoto, H. Characterization of NMHCs in downtown urban center Kathmandu and rural site Nagarkot in Nepal. Atmos. Environ. 2000, 34, 3297–3307. [Google Scholar] [CrossRef]
- Sakurai, T.; Kiyono, T.; Nakae, S.; Fujita, S. Analysis of Ammonia Behavior in the Kanto region. J. Jpn. Soc. Atmos. Environ. 2002, 37, 155–165. (In Japanese) [Google Scholar] [CrossRef]
- Mahapatra, P.S.; Puppala, S.P.; Adhikary, B.; Shrestha, K.L.; Dawadi, D.P.; Paudel, S.P.; Panday, A.K. Air quality trends of the Kathmandu Valley: A satellite, observation and modeling perspective. Atmos. Environ. 2019, 201, 334–347. [Google Scholar] [CrossRef]
- Duffy, B.L.; Nelson, P.F. Non-methane exhaust composition in the sydney harbour tunnel: A focus on benzene and 1,3-butadiene. Atmos. Environ. 1996, 30, 2759–2768. [Google Scholar] [CrossRef]
- Hoekman, S.K. Speciated Measurements and Calculated Reactivities of Vehicle Exhaust Emissions from Conventional and Reformulated Gasolines. Environ. Sci. Technol. 1992, 26, 1206–1216. [Google Scholar] [CrossRef]
Year | Policy |
---|---|
1991 | Banned diesel three-wheelers registration |
1994 | Emission standards for in-use vehicles |
1999 | Banned three-wheelers operated by diesel |
1999 | Subsidies for electric vehicles |
2000 | Nepal Vehicle Mass Emission Standard EURO I |
2000 | Stopped two stroke registration |
2001 | Announced the ban of 20 year old vehicles, but not implemented |
2001 | National Transport Policy |
2003 | National Ambient Air Quality Standards |
2004 | Two strokes three-wheelers banned from operation |
2009 | National indoor air quality standard and implementation guideline |
2012 | EURO III standard |
2017 | Phase out of 20 year old public transport and goods vehicles |
2017 | Import of EURO IV fuel quality |
Koteshwor | Sanepa | SD 1 (n = 5) | |||||
---|---|---|---|---|---|---|---|
Maximum | Minimum | Mean | Maximum | Minimum | Mean | ||
Ethane | 8.3 | 6.3 | 7.2 | 6.7 | 4.3 | 5.0 | 0.26 |
Propane | 7.3 | 2.1 | 5.3 | 7.2 | 2.1 | 3.7 | 0.27 |
n-butane | 7.6 | 2.8 | 6.0 | 5.9 | 1.3 | 2.6 | 0.21 |
Isobutane | 5.9 | 1.3 | 3.6 | 5.6 | 0.51 | 1.9 | 0.093 |
n-pentane | 7.0 | 2.8 | 4.8 | 1.1 | 0.27 | 0.55 | 0.036 |
Isopentane | 27 | 9.8 | 18 | 4.1 | 0.91 | 1.9 | 0.015 |
Cyclohexane | 4.0 | 1.8 | 2.9 | 0.51 | 0.16 | 0.25 | 0.038 |
n-nonane | 1.7 | 0.28 | 0.74 | 0.099 | 0.046 | 0.059 | 0.030 |
n-decane | 1.7 | 0.044 | 0.53 | N.D. 2 | N.D. | N.D. | 0.029 |
n-undecane | 1.3 | N.D. | 0.42 | 0.05 | N.D. | N.D. | 0.033 |
Ethylene | 38 | 21 | 29 | 12 | 2.3 | 5.0 | 0.39 |
1-butene | 2.2 | 1.1 | 1.5 | 1.1 | 0.09 | 0.39 | 0.060 |
Acetylene | 30 | 13 | 21 | 7.7 | 0.49 | 2.6 | 0.33 |
Acetone | 3.9 | 0.45 | 2.1 | 5.8 | 1.9 | 3.7 | 0.30 |
Benzene | 7.9 | 3.7 | 5.6 | 2.1 | 0.30 | 0.79 | 0.047 |
Toluene | 25 | 11 | 17 | 3.1 | 0.62 | 1.3 | 0.059 |
1,2,4-trimethylbenzene | 4.0 | 0.90 | 2.8 | 0.29 | 0.054 | 0.11 | 0.036 |
1,2,3-trimethylbenzene | 1.0 | 0.24 | 0.72 | 0.084 | 0.042 | 0.052 | 0.028 |
Formaldehyde | 27 | 17 | 23 | 12 | 3.7 | 6.5 | 0.00032 |
Acetaldehyde | 14 | 6.3 | 11 | 10 | 1.5 | 4.5 | 0.00012 |
Isobutane | Isopentane | n-Nonane | ||||
---|---|---|---|---|---|---|
9:00 | 5.9 | 15 | 0.45 | 0.0114 | 0.00867 | 0.000732 |
11:30 | 3.7 | 27 | 0.47 | 0.00227 | 0.0177 | 0.000512 |
14:00 | 3.5 | 20 | 1.7 | 0.00314 | 0.0129 | 0.00560 |
16:30 | 1.3 | 9.8 | 0.28 | 0.000535 | 0.00660 | 0.000578 |
Tailpipe [15] | ||||||
LV | 392.6 | 177.7 | 9.3 | |||
GV | 158.1 | 1475.1 | 17.6 | |||
DV | 37.5 | 23.1 | 266.3 |
Ethylene | Acetylene | Isopentane | n-Decane | PM2.5 | CO | |
---|---|---|---|---|---|---|
Acetylene | 0.94 | |||||
Isopentane | 0.82 | 0.96 | ||||
n-decane | −0.20 | 0.03 | 0.24 | |||
PM2.5 | 0.32 | −0.01 | −0.27 | −0.55 | ||
CO | 0.95 | 0.80 | 0.61 | −0.45 | 0.56 | |
Propane | 0.73 | 0.67 | 0.60 | 0.31 | 0.40 | 0.65 |
Isobutane | 0.65 | 0.47 | 0.32 | 0.06 | 0.70 | 0.67 |
n-butane | 0.83 | 0.78 | 0.68 | 0.21 | 0.40 | 0.75 |
Pentane | 0.88 | 0.99 | 0.99 | 0.15 | −0.15 | 0.70 |
Cyclohexane | 0.83 | 0.97 | 1.0 | 0.25 | −0.23 | 0.62 |
n-nonane | −0.16 | 0.08 | 0.29 | 1.0 | −0.55 | −0.41 |
1-butene | 0.43 | 0.17 | −0.03 | −0.12 | 0.88 | 0.55 |
Benzene | 0.99 | 0.97 | 0.88 | −0.17 | 0.20 | 0.91 |
Toluene | 0.95 | 1.00 | 0.95 | −0.03 | 0.02 | 0.82 |
1,2,4-trimethylbenzene | 0.78 | 0.89 | 0.92 | 0.45 | −0.11 | 0.56 |
1,2,3-trimethylbenzene | 0.76 | 0.88 | 0.92 | 0.48 | −0.13 | 0.54 |
m-ethyltoluene | 0.82 | 0.93 | 0.95 | 0.39 | −0.12 | 0.61 |
m-diethylbenzene | 0.49 | 0.75 | 0.90 | 0.53 | −0.63 | 0.21 |
p-diethylbenzene | 0.55 | 0.74 | 0.85 | 0.69 | −0.33 | 0.29 |
Acetone | −0.47 | −0.71 | −0.86 | −0.70 | 0.53 | -0.18 |
Methylethylketone | −0.06 | -0.38 | −0.60 | −0.47 | 0.93 | 0.21 |
Weekdays AverAge at Putalisadak (1998) [18] | Mean at Eight RoadSide (2003) [14] | Koteshwor 9:00 | Koteshwor 11:30 | |
---|---|---|---|---|
Ethane | 7.86 | 8.35 | 7.58 | |
Ethylene | 59.68 | 31.91 | 38.36 | |
Acetylene | 43.51 | 20.85 | 29.98 | |
Propane | 7.01 | 2.42 | 7.31 | 5.85 |
Propylene | 15.23 | 6.97 | 11.93 | 9.98 |
Isobutene | 21.02 | 2.17 | 5.87 | 3.71 |
n-butane | 53.87 | 2.86 | 7.62 | 7.24 |
trans-2-butene | 0.76 | 0.85 | 0.70 | |
1-butene | 2.94 | 2.19 | 1.34 | |
cis-2-butene | 0.52 | 0.72 | 0.51 | |
1,3-butadiene | 4.18 | 1.55 | 1.48 | |
Isopentane | 33.48 | 8.07 | 14.83 | 26.53 |
Pentane | 32.11 | 4.08 | 4.26 | 6.95 |
Cyclopentane | 5.65 | 0.67 | 1.07 | |
Cyclopentene | 0.46 | |||
3-methyl-1-butene | 0.51 | 0.28 | 0.40 | |
trans-2-pentene | 0.8 | 1.12 | 2.00 | |
2-methyl-2-butene | 0.67 | 2.04 | 3.65 | |
1-pentene | 1.75 | 0.48 | 0.61 | |
cis-2-pentene | 0.9 | 0.56 | 0.93 | |
Isoprene | 0.36 | 0.44 | 0.33 | |
Hexane | 18.09 | 2.67 | 1.43 | 2.23 |
Methylcyclopentane | 23.84 | 1.97 | 3.11 | |
3-methylpentane | 17.69 | 2.16 | 2.62 | 4.20 |
2,2-dimethylbutane | 3.92 | 1.74 | 2.90 | |
2-methylpentane | 21.15 | 3.09 | 5.01 | 8.21 |
2,3-dimethylbutane | 12.59 | 1.78 | 2.84 | |
Cyclohexane | 1.85 | 2.61 | 4.01 |
Weekdays Average at Putalisadak (1998) [18] | Koteshwor 9:00 | Koteshwor 11:30 | ||
---|---|---|---|---|
Ethylene/ | Ethane | 7.59 | 3.82 | 5.06 |
Propane | 8.51 | 4.37 | 6.56 | |
Isobutene | 2.84 | 5.43 | 10.4 | |
n-butane | 1.11 | 4.19 | 5.30 | |
Isopentane | 1.78 | 2.15 | 1.45 | |
n-pentane | 1.86 | 7.49 | 5.52 | |
Acetylene/ | Ethane | 5.54 | 2.50 | 3.95 |
Propane | 6.21 | 2.85 | 5.13 | |
Isobutane | 2.07 | 3.55 | 8.09 | |
n-butane | 0.81 | 2.74 | 4.14 | |
Isopentane | 1.30 | 1.41 | 1.13 | |
n-pentane | 1.36 | 4.89 | 4.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukusaki, Y.; Umehara, M.; Kousa, Y.; Inomata, Y.; Nakai, S. Investigation of Air Pollutants Related to the Vehicular Exhaust Emissions in the Kathmandu Valley, Nepal. Atmosphere 2021, 12, 1322. https://doi.org/10.3390/atmos12101322
Fukusaki Y, Umehara M, Kousa Y, Inomata Y, Nakai S. Investigation of Air Pollutants Related to the Vehicular Exhaust Emissions in the Kathmandu Valley, Nepal. Atmosphere. 2021; 12(10):1322. https://doi.org/10.3390/atmos12101322
Chicago/Turabian StyleFukusaki, Yukiko, Masataka Umehara, Yuka Kousa, Yoshimi Inomata, and Satoshi Nakai. 2021. "Investigation of Air Pollutants Related to the Vehicular Exhaust Emissions in the Kathmandu Valley, Nepal" Atmosphere 12, no. 10: 1322. https://doi.org/10.3390/atmos12101322
APA StyleFukusaki, Y., Umehara, M., Kousa, Y., Inomata, Y., & Nakai, S. (2021). Investigation of Air Pollutants Related to the Vehicular Exhaust Emissions in the Kathmandu Valley, Nepal. Atmosphere, 12(10), 1322. https://doi.org/10.3390/atmos12101322