A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method
Abstract
:1. Introduction
2. Methods
2.1. The Lattice Boltzmann Model for Radiative Transfer
2.2. The Monte Carlo Model of Solar Radiation
2.3. The Computation Domains Setup and Boundary Conditions
3. Results
3.1. Direct Solar Beam Radiation Perpendicular to the Entire Top Boundary
3.2. Direct Solar Radiation from a Top Boundary Window
3.3. GPU Implementation of RT-LBM and Computational Speed
- Set up the radiation parameters and computation grids;
- For each iteration time step t do;
- For each lattice node x do;
- If node x is a boundary point then;
- Apply the boundary conditions;
- End if;
- Compute the equilibrium pdf (Equation (9));
- Compute collision term (Equation (16));
- Update (propagate) the pdf for next time step (Equation (17));
- Compute the radiation intensity (Equation (5));
- End do;
- Check the convergence (Equation (18));
- End do.
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howell, J.R. The Monte Carlo method in radiative heat transfer. J. Heat Transfer. 1998, 120, 547–560. [Google Scholar] [CrossRef]
- Chai, J.C.; Lee, H.S.; Patankar, S.V. Finite volume method for radiation heat transfer. J. Thermophys. Heat Transfer. 1994, 8, 419–425. [Google Scholar] [CrossRef]
- Coelho, J.P. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media. J. Quant. Spectrosc. Radiat. Transf. 2014, 145, 121–146. [Google Scholar] [CrossRef]
- Hunter, B.; Guo, Z. Comparison of quadrature schemes in DOM for anisotropic scattering radiative transfer. Numer. Heat Transf. Part B 2013, 63, 485–507. [Google Scholar] [CrossRef]
- Qian, Y.-H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Matthaeus, W.H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 1992, 45, 5339–5342. [Google Scholar] [CrossRef]
- He, X.; Luo, L.-S. Theory of lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 1997, 56, 6811–6817. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S. Multiple-relaxation-time lattice Boltzmann models in three dimension. Phil. Trans. R. Soc. Lond. A 2002, 360, 437–451. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering, Advances in Computational Fluid Dynamics; World Scientific Publishing Co.: Singapore, 2013; Volume 3, ISBN 978-981-4508-29-2. [Google Scholar]
- Geist, R.; Rasche, K.; Westall, J.; Schalkoff, R. Lattice-Boltzmann lighting. In Eurographics Workshop on Rendering; Keller, A., Jensen, H.W., Eds.; The Eurographics Association: Norrköping, Sweden, 2004; pp. 355–362. [Google Scholar] [CrossRef]
- Geist, R.; Steele, J. A lighting model for fast rendering of forest ecosystems. In Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, Los Angeles, CA, USA, 9–10 August 2008; pp. 99–106. [Google Scholar] [CrossRef] [Green Version]
- Oxenius, J. Kinetic Theory of Particles and Photons: Theoretical Foundations of Non-LTE Plasma Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Asinari, P.; Mishra, S.C.; Borchiellini, R. A lattice Boltzmann formulation for the analysis of radiative heat transfer problems in a participating medium. Numer. Heat Transf. Part B 2010, 57, 126–146. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.C.; Poonia, H.; Das, A.K.; Asinari, P.; Borchiellini, R. Analysis of conduction- radiation heat transfer in a 2D enclosure using the lattice Boltzmann method. Numer. Heat Transf. Part A 2014, 66, 669–688. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, S.; Tan, H. Lattice Boltzmann method for one-dimensional radiation transfer. Phys. Rev. E 2011, 84, 016704. [Google Scholar] [CrossRef] [PubMed]
- Bindra, H.; Patil, D.V. Radiative or neutron transport modeling using a lattice Boltzmann equation framework. Phys. Rev. E 2012, 86, 016706. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, R.; Bindra, R. Coupled radiative and conjugate heat transfer in participating media using lattice Boltzmann methods. Comput. Fluids 2016, 124, 261–269. [Google Scholar] [CrossRef]
- Cifuentes, J.A.B.; Borelli, D.; Cammi, A.; Lomonaco, G.; Misale, M. Lattice Boltzmann Method Applied to Nuclear Reactors—A Systematic Literature Review. Sustainability 2020, 12, 7835. [Google Scholar] [CrossRef]
- Gairola, A.; Bindra, H. Lattice Boltzmann method for solving non-equilibrium radiative transport problems. Ann. Nucl. Energy 2017, 99, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yi, H.-L.; Tan, H.-P. Lattice Boltzmann method for short-pulsed laser transport in multi-layered Medium. J. Quant. Spectrosc. Radiat. Transf. 2015, 155, 75–89. [Google Scholar] [CrossRef]
- Yi, H.-L.; Yao, F.-J.; Tan, H.-P. Lattice Boltzmann model for a steady radiative transfer equation. Phys. Rev. E 2016, 94, 023312. [Google Scholar] [CrossRef]
- Weih, L.R.; Gabbana, A.; Simeoni, D.; Rezzolla, L.; Succi, S.; Tripiccione, R. Beyond moments: Relativistic lattice Boltzmann methods for radiative transport in computational astrophysics. Mon. Not. R. Astron. Soc. 2020, 498, 3374–3394. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Wang, C.-H.; Zhu, K. A multi-relaxation-time Boltzmann model for radiative transfer equation. J. Comput. Phys. 2021, 429, 110007. [Google Scholar] [CrossRef]
- McHardy, C.; Horneber, T.; Rauh, C. New lattice Boltzmann method for the simulation of three-dimensional radiation transfer in turbid media. Opt. Express 2016, 24, 16999–17017. [Google Scholar] [CrossRef]
- McHardy, C.; Horneber, T.; Rauh, C. Spectral simulation of light propagation in participating media by using a lattice Boltzmann method for photons. Appl. Math. Comput. 2018, 319, 59–70. [Google Scholar] [CrossRef]
- Mink, A.; Thäter, G.; Nirschl, H.; Krause, M.J. A 3D lattice Boltzmann method for light simulation in participating media. J. Comput. Sci. 2016, 17, 431–437. [Google Scholar] [CrossRef]
- Mink, A.; McHardy, C.; Bressel, L.; Rauh, C.; Krause, M.J. Radiative transfer lattice Boltzmann methods: 3D models and their performance in different regimes of radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 2020, 243, 106810. [Google Scholar] [CrossRef]
- Wang, Y.; Benson, M. Large-eddy simulation of turbulent flows over an urban building array with the ABLE-LBM and comparison with 3D MRI observed data sets. Environ. Fluid Mech. 2020, 21, 287–304. [Google Scholar] [CrossRef]
- Wang, Y.; Decker, J.; Pardyjak, E. Large-eddy simulations of turbulent flows around buildings using a Lattice Boltzmann model. J. App. Meteorol. Climat. 2020, 59, 885–899. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Radiative Transfer; Dover: New York, NY, USA, 1960; p. 393. ISBN 978-0-486-60590-6. [Google Scholar]
- Raffuse, S.M.; McCarthy, M.C.; Craig, K.J.; DeWinter, J.L.; Jumbam, L.K.; Fruin, S.; Gauderman, W.J.; Lurmann, F.W. High-resolution MODIS aerosol retrieval during wildfire events in California for use in exposure assessment. J. Geophys. Res. Atmos. 2013, 118, 11242–11255. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; Liu, S.C.; Shiu, C.-J.; Wang, J.; Zhang, Y. Trends in aerosol optical depth in northern China retrieved from sunshine duration data, 2016. Geophys. Res. Lett. 2016, 43, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Pandithurai, G.; Dipu, S.; Dani, K.K.; Tiwari, S.; Bisht, D.S.; Devara, P.C.S.; Pinker, R.T. Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res. 2008, 113, D13209. [Google Scholar] [CrossRef]
- Mulcahy, J.P.; O’Dowd, C.D.; Jennings, S.G. Aerosol optical depth in clean marine and continental northeast Atlantic air. J. Geophys. Res. 2009, 114, D20204. [Google Scholar] [CrossRef] [Green Version]
- Baakeem, S.; Saleh, A.; Bawazeer, S.A.; Mohamad, A.A. A novel approach of unit conversion in the lattice Boltzmann method. App. Sci. 2021, 11, 6386. [Google Scholar] [CrossRef]
CPU Xeon 3.1 GHz (Seconds) | Tesla GPU V100 (Seconds) | GPU Speed Up Factor (CPU/GPU) | |
---|---|---|---|
RT-MC | 370 | 406.53 | |
RT-LBM | 35.71 | 0.91 | 39.24 |
CPU Xeon 3.1 GHz (Seconds) | Tesla GPU V100 (Seconds) | GPU Speed Up Factor (CPU/GPU) | |
---|---|---|---|
RT-LBM | 3632.14 | 30.26 | 120.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zeng, X.; Decker, J. A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method. Atmosphere 2021, 12, 1316. https://doi.org/10.3390/atmos12101316
Wang Y, Zeng X, Decker J. A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method. Atmosphere. 2021; 12(10):1316. https://doi.org/10.3390/atmos12101316
Chicago/Turabian StyleWang, Yansen, Xiping Zeng, and Jonathan Decker. 2021. "A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method" Atmosphere 12, no. 10: 1316. https://doi.org/10.3390/atmos12101316
APA StyleWang, Y., Zeng, X., & Decker, J. (2021). A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method. Atmosphere, 12(10), 1316. https://doi.org/10.3390/atmos12101316