Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Definition of Dry and Wet EHT Days
2.2.2. Wave Activity Flux
2.2.3. Identification of Some High-Pressure Systems
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, K.; Yang, S.; Liu, A.; Li, C.; Hu, C. Unprecedented East Asian Warming in Spring 2018 Linked to the North Atlantic Tripole SST Mode. Atmos. Ocean. Sci. Lett. 2019, 12, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Pi, Y.; Yang, Y.; Zhang, Y.; Xu, C.; Yu, R. Extreme Temperature Events during 1960–2017 in the Arid Region of Northwest China: Spatiotemporal Dynamics and Associated Large-Scale Atmospheric Circulation. Sustainability 2020, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Yatim, A.N.M.; Latif, M.T.; Ahamad, F.; Khan, M.F.; Nadzir, M.S.M.; Juneng, L. Observed Trends in Extreme Temperature over the Klang Valley, Malaysia. Adv. Atmos. Sci. 2019, 36, 1355–1370. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A Decade of Weather Extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F. Death Toll Exceeded 70,000 in Europe during the Summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H.; et al. The 2020 Report of the Lancet Countdown on Health and Climate Change: Responding to Converging Crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Liang, X.-Z.; Huang, C. Increasing heat risk in China’s urban agglomerations. Environ. Res. Lett. 2021, 16, 064073. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid Increase in the Risk of Extreme Summer Heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Q.; Yang, Y.; Qian, W. Anomaly Based Analysis of Extreme Heat Waves in Eastern China during 1981–2013. Int. J. Climatol. 2017, 37, 509–523. [Google Scholar] [CrossRef]
- Wen, Q.H.; Zhang, X.; Xu, Y.; Wang, B. Detecting Human Influence on Extreme Temperatures in China. Geophys. Res. Lett. 2013, 40, 1171–1176. [Google Scholar] [CrossRef]
- Ye, D.; Yin, J.; Chen, Z.; Zheng, Y.; Wu, R. Spatiotemporal Change Characteristics of Summer Heatwaves in China in 1961–2010. Clim. Chang. Res. 2013, 9, 15–20. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W.; Yan, Z. Changes in Hot Days and Heat Waves in China during 1961–2007. Int. J. Climatol. 2010, 30, 1452–1462. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Y.; Yue, S.; Liu, B. On spatiotemporal variations of heat waves in the Yangtze River Basin from 1961 to 2010. J. Yunnan Univ. 2016, 38, 602–609. [Google Scholar]
- Chen, Y.; Zhang, L.; Qian, H. Variation Characteristics and Spatial Differences of Extremely High Temperature Days over South China during the Recent 53 Years. Trop. Geogr. 2016, 7, 692–699. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Shang, K.; Chen, L.; Wang, H.; Yan, X.; Wang, M. Analysis of the atmospheric circulation anomalies of large-scale extreme high temperature events over central China in recent 50 years. J. Lanzhou Univ. Nat. Sci. 2011, 47, 50–55. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Wang, X.; Fong, S.K.; Leong, K.C. Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos. 2013, 15, 8306–8319. [Google Scholar] [CrossRef]
- Zhang, Y. Study on the Spatial Distribution and Atmospheric Circulation Cause of Extreme High Temperature over Eastern China in Summer. Master’s Thesis, Lanzhou University, Lanzhou, China, 2015. [Google Scholar]
- Luo, M.; Lau, N.-C. Heat Waves in Southern China: Synoptic Behavior, Long-Term Change, and Urbanization Effects. J. Clim. 2017, 30, 703–720. [Google Scholar] [CrossRef]
- Chen, J.; Han, J.; Zhang, S.; Yan, F.; Yang, P. Study on forecast element of heat stroke weather grade based on hotness index in Hebei province. J. Meteorol. Environ. 2013, 29, 86–91. [Google Scholar]
- Zheng, G. Study on Physiological Responses of Relative Population in Hot and Humid Environments. Ph.D. Thesis, Tianjin University, Tianjin, China, 2013. [Google Scholar]
- Li, C. Effects of Relative Humidity and Its Dynamic Change on Human Thermal Comfort. Ph.D. Thesis, Chongqing University, Chongqing, China, 2018. [Google Scholar]
- Tan, M. Effects of Air Humidity and Velocity on Human Thermal Sensation in Summer. Ph.D. Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Tian, Y.; Xu, W. Experiment of human thermal response in warm and humid environment. Heat. Vent. Air Cond. 2003, 33, 27–30. [Google Scholar]
- Ding, T.; Qian, W. Geographical Patterns and Temporal Variations of Regional Dry and Wet Heatwave Events in China during 1960–2008. Adv. Atmos. Sci. 2011, 28, 322–337. [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Dry Tropical Nights and Wet Extreme Heat in Beijing: Atypical Configurations between High Temperature and Humidity. Mon. Weather Rev. 2014, 142, 1792–1802. [Google Scholar] [CrossRef]
- Xu, F.; Chan, T.O.; Luo, M. Different changes in dry and humid heat waves over China. Int. J. Climatol. 2021, 41, 1369–1382. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. North China Plain Threatened by Deadly Heatwaves Due to Climate Change and Irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [Green Version]
- Coffel, E.D.; Horton, R.M.; de Sherbinin, A. Temperature and Humidity Based Projections of a Rapid Rise in Global Heat Stress Exposure during the 21st Century. Environ. Res. Lett. 2017, 13, 014001. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The Emergence of Heat and Humidity Too Severe for Human Tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid Heat Waves at Different Warming Levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef] [PubMed]
- Xu, W. Characteristic and Comfortability Evaluation of Two Types of Summer High Temperature Weather. Meteorol. Sci. Technol. 2014, 42, 719–724. [Google Scholar] [CrossRef]
- Peng, H. Effect of Individual Differences on Physiological Responses under Hot-Dry and Hot-Humid Environment. Master’s Thsis, Tianjin University, Tianjin, China, 2014. [Google Scholar]
- Chen, X.; Li, N.; Huang, C.; Liu, J.; Zhang, Z. Projection of heatwaves by the combined impact of humidity and temperature in China. Prog. Geogr. 2020, 39, 36–44. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Rothfusz, L.P. The Heat Index Equation (or, More than You Ever Wanted to Know about Heat Index); SR 90-23; National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology: Fort Worth, TX, USA, 1990.
- Gao, S. Applied Climatology; China Meteorological Press: Beijing, China, 2001. [Google Scholar]
- Dang, B.; Liu, B.; Yin, L.; Zhou, Z.; He, S.; Li, T.; Shang, K.; Wang, S. Effect of meteorological conditions on heatstroke in summer and its prediction in Beijing. J. Meteorol. Environ. 2015, 31, 67–72. [Google Scholar]
- He, X. Safety Engineering; China University of Mining and Technology Press: Xuzhou, China, 2000. [Google Scholar]
- Nevins, R.; Gonzalez, R.; Nishi, Y.; Gagge, A.P. Effect of Changes in Ambient Temperature and Level of Humidity on Comfort and Thermal Sensations. ASHRAE Trans. 1975, 81, 64–77. [Google Scholar]
- Plumb, R.A. On the Three-Dimensional Propagation of Stationary Waves. J. Atmos. Sci. 1985, 42, 217–229. [Google Scholar] [CrossRef]
- Tan, G.; Sun, Z.; Lin, Z.; Jia, J. Land High over Area South to Lake Baikal and Its Relation with East Asian Summer Monsoon and Climate Anomalies of China. Clim. Environ. Res. 2008, 13, 791–799. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Guan, Z.; Zeng, M. Relationships between the position variation of the west pacific subtropical high and the diabatic heating during persistent intense rain events in Yangtze-Huaihe rivers basin. J. Trop. Meteorol. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Ye, T.; Zhi, R.; Zhao, J.; Gong, Z. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming. Chin. Phys. B 2014, 23, 660–669. [Google Scholar] [CrossRef]
- Li, X. Study on the Extreme High Temperature Events in Summer and Its Effect in Recent 30 Years in North China. Master’s Thesis, Lanzhou University, Lanzhou, China, 2015. [Google Scholar]
- Sun, J.; Wang, H.; Yuan, W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Clim. Environ. Res. 2011, 16, 199–208. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Han, J. Relationship between the Circumglobal Teleconnection and Silk Road Pattern over Eurasian continent. Sci. Bull. 2019, 64, 374–376. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Yang, S.; Ting, M.; Lin, A.; Wang, Z. An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophys. Res. Lett. 2018, 45, 11361–11369. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zeng, G.; Li, C.; Yang, X. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Clim. Dyn. 2020, 54, 3003–3020. [Google Scholar] [CrossRef]
- Li, J.; Zeng, G.; Yang, X.; Zhang, G. Classification of summer extreme high temperature events in Northeast China and their relationships with sea surface temperature anomalies in North Atlantic. Trans. Atmos. Sci. 2021, 44, 302–313. [Google Scholar] [CrossRef]
- Ding, T.; Yuan, Y.; Gao, H.; Li, W. Impact of the North Atlantic sea surface temperature on the summer high temperature in northern China. Int. J. Climatol. 2020, 40, 2296–2309. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Meng, L.; Shen, Y. On the Relationship of Soil Moisture and Extreme Temperatures in East China. Earth Interact. 2014, 18, 1–20. [Google Scholar] [CrossRef]
- Wu, R.; Zeng, G.; Yang, X.; Zhang, G. Interdecadal variability of mid-summer high temperature days in northern China and its association with soil moisture in Mongolian plateau. Prog. Geophys. 2021, 36, 78–87. [Google Scholar] [CrossRef]
Heat Index | Description |
---|---|
80–90 °F (26.7–32.2 °C) | Caution: Fatigue is possible with prolonged exposure and/or physical activity. |
90–103 °F (32.2–39.4 °C) | Extreme caution: Sunstroke, muscle cramps, and/or heat exhaustion possible with prolonged exposure and/or physical activity. |
103–125 °F (39.4–51.6 °C) | Danger: Sunstroke, muscle cramps, and/or heat exhaustion likely. Heatstroke is possible with prolonged exposure and/or physical activity. |
>125 °F (51.6 °C) | Extreme danger: heat stroke likely. |
Zonal Location | 80°–90° E | 90°–110° E | 110°–120° E | 120°–140° E |
---|---|---|---|---|
Dry EHT | 13.54% | 30.73% | 11.46% | 11.46% |
Wet EHT | 8.10% | 17.57% | 15.32% | 31.08% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H.; Zeng, G.; Iyakaremye, V.; Yang, X.; Wang, Z. Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River. Atmosphere 2021, 12, 1265. https://doi.org/10.3390/atmos12101265
Ge H, Zeng G, Iyakaremye V, Yang X, Wang Z. Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River. Atmosphere. 2021; 12(10):1265. https://doi.org/10.3390/atmos12101265
Chicago/Turabian StyleGe, Hangcheng, Gang Zeng, Vedaste Iyakaremye, Xiaoye Yang, and Zongming Wang. 2021. "Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River" Atmosphere 12, no. 10: 1265. https://doi.org/10.3390/atmos12101265
APA StyleGe, H., Zeng, G., Iyakaremye, V., Yang, X., & Wang, Z. (2021). Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River. Atmosphere, 12(10), 1265. https://doi.org/10.3390/atmos12101265