Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset
Abstract
:1. Introduction
1.1. Background
1.2. Climatological Aspects
1.3. Example Rainfall Event
2. Materials and Methods
2.1. Theoretical Considerations: Droplet Evaporation
2.2. Droplet Size Retrieval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousef, L.A.; Temimi, M.; Wehbe, Y.; Al Mandous, A. Total cloud cover climatology over the United Arab Emirates. Atmos. Sci. Lett. 2019, 20, 2. [Google Scholar] [CrossRef]
- National Center of Meteorology and Seismology, UAE. Rainfall Enhancement Assessment Program, United Arab Emirates (2001–2005). 2005 Report. Available online: http://www.gccmet.net/libraries/download/5 (accessed on 18 September 2021).
- Wehbe, Y.; Tessendorf, S.A.; Weeks, C.; Bruintjes, R.; Xue, L.; Rasmussen, R.M.; Lawson, P.; Woods, S.; Temimi, M. Analysis of aerosol-cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates. Atmos. Chem. Phys. Disc. 2021, 1–28. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Gutman, G. Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res. 1994, 34, 259–283. [Google Scholar] [CrossRef]
- Brenguier, J.L.; Chaumat, L. Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci. 2001, 58, 628–641. [Google Scholar] [CrossRef]
- Filioglou, M.; Giannakaki, E.; Backman, J.; Kesti, J.; Hirsikko, A.; Engelmann, R.; O’Connor, E.; Leskinen, J.T.T.; Shang, X.X.; Korhonen, H.; et al. Optical and geometrical aerosol particle properties over the United Arab Emirates. Atmos. Chem. Phys. 2020, 20, 8909–8922. [Google Scholar] [CrossRef]
- Roelofs, G.J.; Kamphuis, V. Cloud processing, cloud evaporation and Angström exponent. Atmos. Chem. Phys. 2009, 9, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Tonttila, J.; Maalick, Z.; Raatikainnen, T.; Kokkola, H.; Kuhn, T.; Romakkaniemi, S. UCLALES-SALSA v1.0: A large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation. Geosci. Model Dev. 2017, 10, 169–188. [Google Scholar] [CrossRef] [Green Version]
- Tonttila, J.; Afzalifar, A.; Kokkola, H.; Raatikainen, T.; Korhonen, H.; Romakkaniemi, S. Precipitation enhancement in stratocumulus clouds through airbourne seeding: Sensitivity analysis by UCLALES–SALSA. Atmos. Chem. Phys. 2020, 21, 1035–1048. [Google Scholar] [CrossRef]
- Li, X.; Srivastava, R.C. An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteorol. 2001, 40, 1607–1616. [Google Scholar] [CrossRef]
- Gori, E.G.; Joss, J. Changes of shape of raindrop size distributions simultaneously observed along a mountain slope. J. Rech. Atmos. 1980, 14, 289–300. [Google Scholar]
- Levin, Z.; Feingold, G.; Tzivion, S.; Waldvogel, A. The Evolution of Raindrop Spectra: Comparisons between modeled and observed spectra along a mountain slope in Switzerland. J. Appl. Meteorol. 1991, 30, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Leary, C.A.; Houze, R.A. Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci. 1979, 36, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Mintz, Y. Evaporation of Rain Falling from Convective Clouds as Derived from Radar Measurements. J. Appl. Meteorol. 1988, 27, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Comstock, K.K.; Wood, R.; Yuter, S.E.; Bretherton, C.S. Reflectivity and rain rate in and below drizzling stratocumulus. Q. J. Roy. Meteorol. Soc. 2004, 130, 2891–2918. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.; Wang, Y.; Pincus, R.; Kujala, V. Precipitation in stratocumulus clouds: Observational and modeling results. J. Atmos. Sci. 1995, 52, 2329–2352. [Google Scholar] [CrossRef] [Green Version]
- Vali, G.; Kelly, R.D.; French, J.; Haimov, S.; Leon, D.; McIntosh, R.E.; Pazmany, A. Finescale structure and microphysics of coastal stratus. J. Atmos. Sci. 1998, 55, 3540–3564. [Google Scholar] [CrossRef]
- Stevens, B.; Lenschow, D.H.; Vali, G.; Gerber, H.; Bandy, A.; Blomquist, B.; Brenguier, J.L.; Bretherton, C.S.; Burnet, F.; Campos, T.; et al. Dynamics and chemistry of marine stratocumulus: DYCOMS-II. Bull. Am. Meteorol. Soc. 2003, 84, 579–594. [Google Scholar] [CrossRef]
- Kumar, K.N.; Suzuki, K. Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sens. Environ. 2019, 228, 90–104. [Google Scholar] [CrossRef]
- Branch, O.; Behrendt, A.; Gong, Z.; Schwitalla, T.; Wulfmeyer, V. Convection Initiation over the Eastern Arabian Peninsula. Meteorol. Z. 2020, 29, 67–77. [Google Scholar] [CrossRef]
- Wehbe, Y.; Ghebreyesus, D.; Temimi, M.; Milewski, A.; Al Mandous, A. Assessment of the consistency among global precipitation products over the United Arab Emirates. J. Hydrol. Reg. Stud. 2017, 12, 122–135. [Google Scholar] [CrossRef]
- Eager, R.E.; Raman, S.; Wootten, A.; Westphal, D.L.; Reid, J.S.; Al Mandoos, A. A climatological study of the sea and land breezes in the Arabian Gulf region. J. Geophys. Res. Atmos. 2008, 113, D15106. [Google Scholar] [CrossRef] [Green Version]
- Wehbe, Y.; Temimi, M. A remote sensing-based assessment of water resources in the Arabian Peninsula. Remote Sens. 2021, 13, 247. [Google Scholar] [CrossRef]
- Wehbe, Y.; Temimi, M.; Weston, M.; Chaouch, N.; Branch, O.; Schwitalla, T.; Wulfmeyer, V.; Zhan, X.; Liu, J.; Al Mandous, A. Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Nat. Hazards Earth Syst. Sci. 2019, 19, 1129–1149. [Google Scholar] [CrossRef] [Green Version]
- Wehbe, Y.; Temimi, M.; Ghebreyesus, D.T.; Milewski, A.; Norouzi, H.; Ibrahim, E. Consistency of precipitation products over the Arabian Peninsula and interactions with soil moisture and water storage. Hydrol. Sci. J. 2018, 63, 408–425. [Google Scholar] [CrossRef]
- Yousef, L.A.; Temimi, M.; Molini, A.; Weston, M.; Wehbe, Y.; Al Mandous, A. Cloud cover over the Arabian Peninsula from global remote sensing and reanalysis products. Atmos. Res. 2020, 238, 104866. [Google Scholar] [CrossRef]
- Wehbe, Y.; Temimi, M.; Adler, R.F. Enhancing precipitation estimates through the fusion of weather radar, satellite retrievals, and surface parameters. Remote Sens. 2020, 12, 1342. [Google Scholar] [CrossRef] [Green Version]
- Nicoll, K.A.; Harrison, R.G.; Marlton, G.J.; Airey, M.W. Consistent dust electrification from Arabian Gulf sea breezes. Environ. Res. Lett. 2020, 15, 084050. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wilson, J.W.; Brandes, E.A. Radar measurement of rainfall—A summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Pruppacher, H.; Klett, J. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 1949, 6, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Foote, G.B.; du Toit, P.S. Terminal velocity of raindrops aloft. J. Appl. Meteorol. 1969, 8, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.; Bryan, G.; Van den Heever, S. Storm and Cloud Dynamics; Academic Press: Cambridge, MA, USA, 2010; Volume 99. [Google Scholar]
- Almazroui, A.; Farrah, S. The UAE seeks leading position in global rain enhancement research. J. Weather Modif. 2017, 49, 54–59. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Airey, M.W.; Nicoll, K.A.; Harrison, R.G.; Marlton, G.J. Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset. Atmosphere 2021, 12, 1245. https://doi.org/10.3390/atmos12101245
Airey MW, Nicoll KA, Harrison RG, Marlton GJ. Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset. Atmosphere. 2021; 12(10):1245. https://doi.org/10.3390/atmos12101245
Chicago/Turabian StyleAirey, Martin W., Keri A. Nicoll, R. Giles Harrison, and Graeme J. Marlton. 2021. "Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset" Atmosphere 12, no. 10: 1245. https://doi.org/10.3390/atmos12101245