New Urbanization, Energy-Intensive Industries Agglomeration and Analysis of Nitrogen Oxides Emissions Reduction Mechanisms
Abstract
:1. Introduction
2. Methodology
2.1. Model Setting
2.1.1. Benchmark Regression Model
2.1.2. Intermediary Effect Model
2.2. Index Construction
2.2.1. New Urbanization
2.2.2. Energy-Intensive Industries Agglomeration
2.3. Data Description
3. Results
3.1. Stationary Test and Multicollinearity Test of Variables
3.2. Regression of the Basic Model
3.3. Mechanism Analysis
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Alvarez, A. Air pollution and life expectancy in Europe: Does investment in renewable energy matter? Sci. Total Environ. 2021, 792, 148480. [Google Scholar] [CrossRef]
- Ścibor, M.; Balcerzak, B.; Galbarczyk, A.; Jasienska, G. Quality of life of patients with bronchial asthma exposed to gaseous air pollution in the place of residence. Sustain. Cities Soc. 2021, 64, 102541. [Google Scholar] [CrossRef]
- Kanner, J.; Pollack, A.Z.; Ranasinghe, S.; Stevens, D.R.; Nobles, C.; Rohn, M.C.H.; Sherman, S.; Mendola, P. Chronic exposure to air pollution and risk of mental health disorders complicating pregnancy. Environ. Res. 2021, 196, 110937. [Google Scholar] [CrossRef] [PubMed]
- Bakolis, I.; Hammoud, R.; Stewart, R.; Beevers, S.; Dajnak, D.; MacCrimmon, S.; Broadbent, M.; Pritchard, M.; Shiode, N.; Fecht, D.; et al. Mental health consequences of urban air pollution: Prospective population-based longitudinal survey. Soc. Psychiatry Psychiatr. Epidemiol. 2020, 56, 1587–1599. [Google Scholar] [CrossRef]
- Gutiérrez-Delgado, R.I.; Barraza-Villarreal, A.; Escamilla-Núñez, M.C.; Hernández-Cadena, L.; Cortez-Lugo, M.; Sly, P.; Romieu, I. Prenatal exposure to VOCs and NOx and lung function in preschoolers. Pediatr. Pulmonol. 2020, 55, 2142–2149. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection of the People’s Republic of China. Bulletin on the Second National Census of Pollution Sources; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2020.
- Gilbert, B.A.; McDougall, P.P.; Audretsch, D.B. Clusters, knowledge spillovers and new venture performance: An empirical examination. J. Bus. Ventur. 2008, 23, 405–422. [Google Scholar] [CrossRef]
- Iammarino, S.; McCann, P. The structure and evolution of industrial clusters: Transactions, technology and knowledge spillovers. Res. Policy 2006, 35, 1018–1036. [Google Scholar] [CrossRef]
- Chou, T.L.; Ching, C.H.; Fan, S.-M.; Chang, J.Y. Global linkages, the Chinese high-tech community and industrial cluster development: The semiconductor industry in Wuxi, Jiangsu. Urban Stud. 2011, 48, 3019–3042. [Google Scholar] [CrossRef]
- Ehrl, P. Agglomeration economies with consistent productivity estimates. Reg. Sci. Urban Econ. 2013, 43, 751–763. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Lu, C.; Song, K.; Su, Y.; Lei, Y.; Zhong, L.; Gao, Y. Analysis of coupling coordination variance between urbanization quality and eco-environment pressure: A case study of the west Taiwan strait urban agglomeration, China. Sustainability 2020, 12, 2643. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Martins, H.; Tchepel, O.; Salmim, L.; Monteiro, A.; Miranda, A.I. How urban structure can affect city sustainability from an air quality perspective. Environ. Model. Softw. 2006, 21, 461–467. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.; Han, M. How to maintain a sustainable environment? A spatial evolution of urban atmospheric pollution and impact factors in China. Sustainability 2019, 11, 4376. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Lu, X.; Xiao, C.; Chang, M.; Huang, K. Estimation of health effects and economic losses from ambient air pollution in undeveloped areas: Evidence from Guangxi, China. Int. J. Environ. Res. Public Health 2019, 16, 2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Zhou, C. Understanding the relation between urbanization and the eco-environment in China’s Yangtze River Delta using an improved EKC model and coupling analysis. Sci. Total Environ. 2016, 571, 862–875. [Google Scholar] [CrossRef]
- Ge, X.; Zhou, Z.; Zhou, Y.; Ye, X.; Liu, S. A spatial panel data analysis of economic growth, urbanization, and NOx emissions in China. Int. J. Environ. Res. Public Health 2018, 15, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malthus, T.R. An Essay on the Principle of Population; J. Johnson: London, UK, 1798. [Google Scholar]
- Preston, S.H. The effect of population growth on environmental quality. Popul. Res. Policy Rev. 1996, 15, 95–108. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Chalkley, K. Population growth and consumption. Popul. Today 1997, 25, 4. [Google Scholar] [PubMed]
- Cramer, J.C.; Cheney, R.P. Lost in the ozone: Population growth and ozone in California. Popul. Environ. 2000, 21, 315–338. [Google Scholar] [CrossRef]
- Hosoe, M.; Naito, T. Trans-boundary pollution transmission and regional agglomeration effects. Pap. Reg. Sci. 2006, 85, 99–120. [Google Scholar] [CrossRef]
- Li, K.; Chu, C.; Hung, D.; Chang, C.; Li, S. Industrial cluster, network and production value chain: A new framework for industrial development based on specialization and division of labour. Pac. Econ. Rev. 2010, 15, 596–619. [Google Scholar] [CrossRef]
- Ehrlich, M.V.; Seidel, T. More similar firms-More similar regions? On the role of firm heterogeneity for agglomeration. Reg. Sci. Urban Econ. 2013, 43, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Virkanen, J. Effect of urbanization on metal deposition in the bay of Töölönlahti, Southern Finland. Mar. Pollut. Bull. 1998, 36, 729–738. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A Chinese city-level study. Energy Policy 2021, 148, 111928. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Du, K. The impact of industrial agglomeration on industrial pollutant emission: Evidence from China under New Normal. Clean Technol. Environ. Policy 2017, 19, 2327–2334. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Lööf, H. Agglomeration and productivity: Evidence from firm-level data. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Sun, Y.; Lan, Q.; Jiang, F. Impacts of industrial agglomeration on pollution and ecological efficiency-A spatial econometric analysis based on a big panel dataset of China’s 259 cities. J. Clean. Prod. 2020, 258, 120721. [Google Scholar] [CrossRef]
- Shen, N.; Peng, H. Can industrial agglomeration achieve the emission-reduction effect? Socioecon. Plann. Sci. 2021, 75, 100867. [Google Scholar] [CrossRef]
- Zhang, L.; Rong, P.; Qin, Y.; Ji, Y. Does Industrial agglomeration mitigate fossil CO2 emissions? An empirical study with spatial panel regression model. Energy Procedia 2018, 152, 731–737. [Google Scholar] [CrossRef]
- Gao, C.; Gao, W.; Song, K.; Na, H.; Tian, F.; Zhang, S. Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China: A bottom-up approach. Resour. Conserv. Recycl. 2019, 143, 184–200. [Google Scholar] [CrossRef]
- Ye, P.; Xia, S.; Xiong, Y.; Liu, C.; Li, F.; Liang, J.; Zhang, H. Did an ultra-low emissions policy on coal-fueled thermal power reduce the harmful emissions? Evidence from three typical air pollutants abatement in China. Int. J. Environ. Res. Public Health 2020, 17, 8555. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhang, H.; Cai, X.; Chen, L.; Liu, M.; Lin, H.; Wang, X. Characteristics of CO2 and atmospheric pollutant emissions from China’s cement industry: A life-cycle perspective. J. Clean. Prod. 2021, 282, 124533. [Google Scholar] [CrossRef]
- Liu, R.C.; Jiang, F.Y.; Liu, Z.Q. Comments on NOx emission abatement in cement industry. Adv. Mater. Res. 2012, 422, 509–513. [Google Scholar] [CrossRef]
- Ialongo, I.; Stepanova, N.; Hakkarainen, J.; Virta, H.; Gritsenko, D. Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia. Atmos. Environ. X 2021, 11, 100114. [Google Scholar] [CrossRef]
- Shimada, K.; Mizoguchi, S.; Hibino, G.; Matsuoka, Y. A Study on the Effects on Local Air Quality from the Greenhouse Gas Mitigation Measures. Environ. Syst. Res. 2000, 28, 77–84. [Google Scholar] [CrossRef]
- Liu, L.J.; Liang, Q.M. Changes to pollutants and carbon emission multipliers in China 2007–2012: An input-output structural decomposition analysis. J. Environ. Manag. 2017, 203, 76–86. [Google Scholar] [CrossRef]
- Hermoso-Orzáez, M.J.; García-Alguacil, M.; Terrados-Cepeda, J.; Brito, P. Measurement of environmental efficiency in the countries of the European Union with the enhanced data envelopment analysis method (DEA) during the period 2005–2012. Environ. Sci. Pollut. Res. 2020, 27, 15691–15715. [Google Scholar] [CrossRef]
- Xu, F.; Shu, C.; Tian, J.; Chen, L. A decade advance in eco-efficiency and cost-benefits of emissions reduction targeting fine chemical manufacturers. J. Environ. Manag. 2021, 298, 113476. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Tian, J.; He, R.; Chen, L. Eco-efficiency assessment of coal-fired combined heat and power plants in Chinese eco-industrial parks. J. Clean. Prod. 2017, 168, 963–972. [Google Scholar] [CrossRef]
- Hu, W.; Guo, Y.; Tian, J.; Chen, L. Eco-efficiency of centralized wastewater treatment plants in industrial parks: A slack-based data envelopment analysis. Resour. Conserv. Recycl. 2019, 141, 176–186. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, Y. Industrial agglomeration and environmental pollution: Evidence from China under new urbanization. Energy Environ. 2019, 30, 1010–1026. [Google Scholar] [CrossRef]
- Yu, Y.; Deng, Y.R.; Chen, F.F. Impact of population aging and industrial structure on CO2 emissions and emissions trend prediction in China. Atmos. Pollut. Res. 2018, 9, 446–454. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y. Has technological innovation capability addressed environmental pollution from the dual perspective of FDI quantity and quality? Evidence from China. J. Clean. Prod. 2020, 258, 120941. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W. Impact of FDI and R&D on China’s industrial CO2 emissions reduction and trend prediction. Atmos. Pollut. Res. 2019, 10, 1627–1635. [Google Scholar] [CrossRef]
- Ngo, T.Q. How do environmental regulations affect carbon emission and energy efficiency patterns? A provincial-level analysis of Chinese energy-intensive industries. Environ. Sci. Pollut. Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A.B. Environmental impacts of a North American Free Trade Agreement. CEPR Discuss. Pap. 1992, 2, 223–250. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. How to do xtabond2: An introduction to “difference” and “system” GMM in Stata. work. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Judd, C.M.; Kenny, D.A. Process analysis: Estimating mediation in treatment evaluations. Eval. Rev. 2016, 5, 602–619. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and truths about mediation analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Krull, J.L.; Lockwood, C.M. Equivalence of the mediation, confounding and suppression effect. Prev. Sci. 2000, 1, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Yanna, Z.; Gang, H.; Guisheng, Z.; Keyu, B.; Chaoyu, Y.; Xiangqian, W. Research on coupling coordination and spatial differentiation of new-type urbanization and ecological environment in Wanjiang demonstration area. GeoJournal 2020, 1–13. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Wu, Y.; Wong, S.W.; Shen, L. Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Sci. Total Environ. 2020, 730, 138964. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wang, H.; Liu, Y.; Liu, H. Spatio-temporal variation of the coupling relationship between urbanization and air quality: A case study of Shandong Province. J. Clean. Prod. 2020, 272, 122812. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China 2007–2018. China Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- Ministry of Ecology and Environment of the People’s Republic of China 2006–2015. Annual Report on Environmental Statistics; Ministry of Ecology and Environment: Beijing, China, 2015.
- Ministry of Environmental Protection of the People’s Republic of China 2007–2018. China Environment Yearbook; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2018.
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F. Unit root tests in panel data: Asymptotic and finite-sample integrated systems. Econometrica 1992, 61, 783–820. [Google Scholar]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Fisher-Vanden, K.; Sue Wing, I. Accounting for quality: Issues with modeling the impact of R&D on economic growth and carbon emissions in developing economies. Energy Econ. 2008, 30, 2771–2784. [Google Scholar] [CrossRef]
- Yu, Y.; Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’ economy in China. Atmos. Pollut. Res. 2019, 10, 152–161. [Google Scholar] [CrossRef]
- Pata, U.K.; Caglar, A.E. Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. Energy. 2021, 216, 119220. [Google Scholar] [CrossRef]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Yang, H.Y. A note on the causal relationship between energy and GDP in Taiwan. Energy Econ. 2000, 22, 309–317. [Google Scholar] [CrossRef]
Target Layer | Dimension | Index | Polarity |
---|---|---|---|
Comprehensive evaluation index of new urbanization | Population urbanization | Proportion of urban population (%) | + |
Urban population density (people/km2) | + | ||
Dependency ratio of the elderly population (%) | + | ||
Social development urbanization | Medical insurance (ten thousand) | + | |
Proportion of fixed assets investment (%) | + | ||
Consumption proportion of urban and rural residents (%) | - | ||
Number of museums (unit) | + | ||
Ecological environment urbanization | Pollution-free treatment rate of domestic waste (%) | + | |
Per capita green space (m2/person) | + | ||
Urban green space area (hectares) | + | ||
Number of parks (unit) | + | ||
Land urbanization | Per capita urban road area (m2) | + | |
Construction area (km2) | + |
Variables | Representations of Variable | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
lnNE | Regional NOx emissions | 3.8538 | 0.7655 | 1.3863 | 5.1936 |
lnnurb | — | 5.8389 | 0.4071 | 4.4776 | 6.7733 |
lnhagg | — | 0.0691 | 0.4509 | −1.2463 | 1.6868 |
lnpgdp | GDP per resident population | 10.3004 | 0.6220 | 8.6570 | 11.9360 |
lner | Proportion of environmental protection expenditure in fiscal expenditure in the year | −3.5628 | 0.3617 | −4.7732 | −2.6992 |
lnr&d | The proportion of regional research and experiment funds in GDP | −4.7267 | 0.6613 | −8.0286 | −3.5696 |
lnfdi | The proportion of actual foreign direct investment in industrial added value of the year | 14.4673 | 1.5769 | 9.7361 | 16.9303 |
lnis | The proportion of added value of secondary industry in GDP | −0.6907 | 0.1903 | −1.4451 | −0.4897 |
lnee | The ratio of gross regional product to regional energy consumption | −0.0643 | 0.4942 | −1.3816 | 1.0164 |
lnhc | The proportion of the number of students in colleges and universities in the total population of the region | 4.092 | 0.8314 | 1.2809 | 5.3059 |
lnes | The ratio of coal consumption to total energy consumption | −0.4733 | 0.4439 | −3.0136 | 0.4248 |
Variables | I (0) | I (1) | VIF | |
---|---|---|---|---|
LLC Test | IPS Test | IPS Test | ||
lnNE | −9.7787 *** | −2.1377 | −9.3706 *** | — |
lnnurb | −28.3692 *** | −4.7110 *** | −12.5630 *** | 1.51 |
lnhagg | −9.1874 *** | −1.5977 * | −8.2932 *** | 2.30 |
lnpgdp | −5.4468 *** | 1.7051 | −4.3022 *** | 3.67 |
lner | −11.3619 *** | −3.9842 *** | −8.6963 *** | 1.23 |
lnr&d | −5.6201 *** | 0.3098 | −12.3932 *** | 3.00 |
lnfdi | −9.6044 *** | −2.7313 *** | −9.0860 *** | 4.84 |
lnis | −7.3855 *** | 1.7466 | −6.4407 *** | 2.33 |
lnee | −3.3887 *** | 2.0213 | −5.4591 *** | 5.71 |
lnhc | −5.6826 *** | 1.0969 | −7.6319 *** | 4.65 |
lnes | −9.1010 *** | −1.8949 ** | −5.4591 *** | 2.34 |
Variables | Contains No Interaction Term | Contain Interaction Items | ||
---|---|---|---|---|
RE | FE | SYS-GMM | SYS-GMM | |
lnNEi,t-1 | — | — | 0.4075 *** | 0.4633 *** |
— | — | (0.0176) | (0.0242) | |
lnnurb | −0.1273 * | −0.1750 ** | −0.4766 *** | −0.2929 *** |
(0.0773) | (0.0799) | (0.0639) | (0.0992) | |
lnhagg | 0.1723 *** | 0.2006 *** | 0.1290 *** | 0.0963 *** |
(0.0631) | (0.0634) | (0.0157) | (0.0167) | |
Clnnurb* clnhagg | — | — | — | −0.2818*** |
— | — | — | (0.0665) | |
lnis | 2.5061 *** | 2.8958 *** | 2.1128 *** | 1.6204 *** |
(0.2845) | (0.3243) | (0.2156) | (0.3252) | |
lnfdi | 0.0361 | −0.0040 | 0.1421 *** | 0.1173 *** |
(0.0321) | (0.0340) | (0.0255) | (0.0199) | |
lner | −0.1881 *** | −0.1486 ** | −0.4251 *** | −0.3833 *** |
(0.0592) | (0.0608) | (0.0372) | (0.0350) | |
lnpgdp | −0.3390 *** | −0.3235 *** | −0.6537 *** | −0.5941*** |
(0.0719) | (0.0768) | (0.0377) | (0.0638) | |
lnr&d | 0.2245 *** | 0.2060 *** | 0.4274 *** | 0.3560 *** |
(0.0622) | (0.0630) | (0.0463) | (0.0736) | |
cons | 9.6767 *** | 10.6965 *** | 11.6863 *** | 9.6132 *** |
(0.9698) | (1.0116) | (0.7497) | (0.9050) | |
AR (1) | — | — | −1.8979 | −2.0145 |
— | — | (0.0577) | (0.0440) | |
AR (2) | — | — | 1.0735 | 1.074 |
— | — | (0.2830) | (0.2828) | |
sargan | — | — | 28.2426 | 27.6578 |
— | — | (1.0000) | (1.0000) |
Variables | The Mediating Variable of Energy Efficiency | The Mediating Variable of Human Capital | ||||
---|---|---|---|---|---|---|
lnNE | lnee | lnNE | lnNE | lnhc | lnNE | |
(3) | (4) | (5) | (3) | (4) | (5) | |
lnNEi,t-1 | 0.4238 *** | — | 0.4047 *** | 0.4238 *** | — | 0.4259 *** |
(0.0163) | — | (0.0232) | (0.0163) | — | (0.0296) | |
lneei,t-1 | — | 0.8671 *** | — | — | — | — |
— | (0.0132) | — | — | — | — | |
lnhci,t-1 | — | — | — | — | 0.9659 *** | — |
— | — | — | — | (0.0214) | — | |
lnnurb | −0.4236 *** | 0.0470 *** | −0.2199 *** | −0.4236 *** | 0.0089 * | −0.3304 *** |
(0.0426) | (0.0076) | (0.0489) | (0.0426) | (0.0048) | (0.0472) | |
lnee | — | — | −0.9432 *** | — | — | — |
— | — | (0.0785) | — | — | — | |
lnhc | — | — | — | — | — | −0.3117 *** |
— | — | — | — | — | (0.0957) | |
lnpgdp | −0.6330 *** | 0.0361 * | −0.2535 *** | −0.6330 *** | −0.0330 *** | −0.6642 *** |
(0.0351) | (0.0201) | (0.0791) | (0.0351) | (0.0078) | (0.0574) | |
lner | −0.3980 *** | 0.0248 *** | −0.3486 *** | −0.3980 *** | 0.0225 *** | −0.3433 *** |
(0.0360) | (0.0055) | (0.0308) | (0.0360) | (0.0027) | (0.0381) | |
lnr&d | 0.4067 *** | −0.0022 | 0.4190 *** | 0.4067 *** | −0.0513 *** | 0.4051 *** |
(0.0419) | (0.0111) | (0.0444) | (0.0419) | (0.0071) | (0.0360) | |
lnfdi | 0.1307 *** | 0.0300 *** | 0.2554 *** | 0.1307 *** | 0.0133 *** | 0.2363 *** |
(0.0231) | (0.0043) | (0.0277) | (0.0231) | (0.0021) | (0.0368) | |
lnis | 2.2238 *** | 0.1023 | 1.7462 *** | 2.2238 *** | 0.1179 *** | 2.5879 *** |
(0.1920) | (0.0645) | (0.2563) | (0.1920) | (0.0287) | (0.3300) | |
Cons | 11.3629 *** | −0.8930 *** | 4.3882 *** | 11.3629 *** | 0.2036 ** | 11.3177 *** |
(0.5210) | (0.2597) | (1.1342) | (0.5210) | (0.0950) | (0.9964) | |
AR (1) | −1.8648 | −3.8826 | −2.0264 | −1.8648 | −1.9778 | −1.8819 |
(0.0622) | (0.0001) | (0.0427) | (0.0622) | (0.0479) | (0.0599) | |
AR (2) | 0.6226 | 1.4088 | 0.6659 | 0.6226 | 0.3007 | 0.5858 |
(0.5336) | (0.1589) | (0.5055) | (0.5336) | (0.7636) | (0.5580) | |
sargan | 28.9093 | 28.2143 | 28.7847 | 28.9093 | 24.1725 | 28.1055 |
(1.0000) | (1.0000) | (1.0000) | (1.0000) | (1.0000) | (1.0000) |
Variables | The Mediating Variable of Industrial Structure | The Mediating Variable of Energy Structure | ||||
---|---|---|---|---|---|---|
lnNE | lnis | lnNE | lnNE | lnes | lnNE | |
(3) | (4) | (5) | (3) | (4) | (5) | |
lnNEi,t-1 | 0.6317 *** | — | 0.4075 *** | 0.6317 *** | — | 0.5943 *** |
(0.0166) | — | (0.0176) | (0.0166) | — | (0.0193) | |
lnisi,t-1 | — | 0.8524 *** | — | — | — | — |
— | (0.0179) | — | — | — | — | |
lnesi,t-1 | — | — | — | — | 1.1056 *** | — |
— | — | — | — | (0.0212) | — | |
lnhagg | 0.1830 *** | 0.0067 *** | 0.1290 *** | 0.1830 *** | −0.0488 *** | 0.2073 *** |
(0.0125) | (0.0007) | (0.0157) | (0.0125) | (0.0053) | (0.0159) | |
lnis | — | — | 2.1128 *** | — | — | — |
— | — | (0.2156) | — | — | — | |
lnes | — | — | — | — | — | 0.2757 *** |
— | — | — | — | — | (0.0785) | |
lnnurb | −0.2588 *** | −0.0135 *** | −0.4766 *** | −0.2588 *** | 0.0172 | −0.4228 *** |
(0.0707) | (0.0020) | (0.0639) | (0.0707) | (0.0127) | (0.0407) | |
lnpgdp | −0.4778 *** | −0.0624 *** | −0.6537 *** | −0.4778 *** | −0.0781 *** | −0.5319 *** |
(0.0363) | (0.0047) | (0.0377) | (0.0363) | (0.0083) | (0.0430) | |
lnr&d | 0.3947 *** | 0.0198 *** | 0.4274 *** | 0.3947 *** | 0.0107 * | 0.4480 *** |
(0.0396) | (0.0056) | (0.0463) | (0.0396) | (0.0065) | (0.0369) | |
lnfdi | 0.0635 *** | −0.0135 *** | 0.1421 *** | 0.0635 *** | 0.0252 *** | 0.1360 *** |
(0.0123) | (0.0019) | (0.0255) | (0.0123) | (0.0078) | (0.0194) | |
lner | −0.3864 *** | −0.0094 *** | −0.4251 *** | −0.3864 *** | −0.0488 *** | −0.4717 *** |
(0.0303) | (0.0024) | (0.0372) | (0.0303) | (0.0087) | (0.0368) | |
cons | 7.4228 *** | 1.0860 *** | 11.6863 *** | 7.4228 *** | 0.2498 ** | 8.0992 *** |
(0.7617) | (0.0580) | (0.7497) | (0.7617) | (0.0998) | (0.5764) | |
AR(1) | −2.044 | −1.7381 | −1.8979 | −2.044 | −3.5169 | −1.9668 |
(0.0409) | (0.0822) | (0.0577) | (0.0409) | (0.0004) | (0.0492) | |
AR(2) | 1.2714 | −1.5556 | 1.0735 | 1.2714 | −0.9703 | 1.2362 |
(0.2036) | (0.1198) | (0.2830) | (0.2036) | (0.3319) | (0.2164) | |
sargan | 28.8792 | 26.8120 | 28.2426 | 28.8792 | 23.6664 | 29.3790 |
(1.0000) | (1.0000) | (1.0000) | (1.0000) | (1.0000) | (1.0000) |
Variables | Object | Type of Effect | Mediating (Masking) Effect/The Total Effect |
---|---|---|---|
new urbanization | energy efficiency | mediating effect | 0.1047 |
human capital | mediating effect | 0.0065 | |
energy-intensive industries agglomeration | industrial structure | mediating effect | 0.0774 |
energy structure | masking effect | −0.0735 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Wang, T. New Urbanization, Energy-Intensive Industries Agglomeration and Analysis of Nitrogen Oxides Emissions Reduction Mechanisms. Atmosphere 2021, 12, 1244. https://doi.org/10.3390/atmos12101244
Yu Y, Wang T. New Urbanization, Energy-Intensive Industries Agglomeration and Analysis of Nitrogen Oxides Emissions Reduction Mechanisms. Atmosphere. 2021; 12(10):1244. https://doi.org/10.3390/atmos12101244
Chicago/Turabian StyleYu, Yang, and Tianchang Wang. 2021. "New Urbanization, Energy-Intensive Industries Agglomeration and Analysis of Nitrogen Oxides Emissions Reduction Mechanisms" Atmosphere 12, no. 10: 1244. https://doi.org/10.3390/atmos12101244
APA StyleYu, Y., & Wang, T. (2021). New Urbanization, Energy-Intensive Industries Agglomeration and Analysis of Nitrogen Oxides Emissions Reduction Mechanisms. Atmosphere, 12(10), 1244. https://doi.org/10.3390/atmos12101244