Receiver Operating Characteristic Curve Analysis-Based Evaluation of GCMs Concerning Atmospheric Teleconnections
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. The Pattern Detection Algorithm
2.2.2. AUC-Based Evaluation of the GCMs
2.2.3. Cluster-Based Evaluation of the GCMs
- associated with MCCmax values close to one;
- its clusters are the most frequently observable and nearest clusters;
- the average distances associated with the clusters are relatively small.
3. Results
3.1. Selection of the Reference Clusters and Reference CP Maps
3.2. Results of the AUC-Based Evaluation of the GCMs
3.3. Results of the Cluster-Based Evaluation of the GCMs
3.3.1. Selection of the Most Similar CP Maps and Matching GCM Clusters with the Reference Clusters
- Simulate the teleconnections over the Pacific Ocean more easterly compared to the ERA-20C (e.g., the GFDL-CM3 and the MIROC5), while most of the GCMs do not capture this shift.
- Reproduce the atmospheric bridge between the Atlantic Ocean and the Pacific Ocean more often than the ERA-20C does (e.g., the CCSM4, the GFDL-CM3, and the MRI-ESM1; the NCEP/NCAR R1 in the period 1956–1985).
- Represent the teleconnection patterns over the North Atlantic Ocean with two distinct clusters (e.g., in some periods of the CMCC-CMS and the MPI-ESM-LR).
- Simulate the most intense regions of the teleconnections over the Atlantic Ocean more westerly than the ERA-20C does (e.g., the ACCESS1-0, the ACCESS1-3, the CCSM4, and the HadGEM2-AO).
- Capture the ACs of cluster ATL in a north-eastern position similar to those of the ERA-20C but reproduce a cluster with more intense correlations over the western part of the North Atlantic Ocean. This cluster merges with the cluster PAC at a low threshold before the easterly located cluster pops up (e.g., in cases of the MRI-ESM1 and the NorESM1-M).
- Miss the cluster MED from the CP map (e.g., the GFDL-CM3 for the period 1951–1980), or the clusters ATL and MED form a joint cluster (e.g., in some time periods of the CMCC-CM, the CMCC-CMS, and the IPSL-CM5A-MR).
- Locate the most intense regions of the cluster MED more easterly than those of the ERA-20C (e.g., the MRI-CGCM3, and the MRI-ESM1) or reproduce two intensity centers in this area, which leads to altering ACs depending on the examined time period (e.g., the ACCESS1-0, the ACCESS1-3, and the HadGEM2-CC).
3.3.2. Evaluation of the GCMs with Respect to the Geographical Location of the ACs
3.3.3. Synthesis
3.3.4. Construction of Mobile Teleconnection Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Adoption of the Paris Agreement. Framework Convention on Climate Change; FCCC/CP/2015/L.9/Rev.1; UN: Paris, France, 2015; Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 9 May 2021).
- James, R.; Washington, R.; Schleussner, C.-F.; Rogelj, J.; Conway, D. Characterizing half-a-degree difference: A review of methods for identifying regional climate responses to global warming targets. Clim. Chang. 2017, 8, e457. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Gaupp, F.; Hall, J.; Mitchell, D.; Dadson, S. Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming. Agric. Syst. 2019, 175, 34–45. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; 24p, in press. [Google Scholar]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, T.F.; Stocker, D.; Qin, D.J.; Dokken, K.L.; Ebi, M.D.; Mastrandrea, K.J.; Mach, G.-K.; Plattner, S.K.; Tignor, A.M.; et al. (Eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Matthews, T.K.R.; Wilby, R.L.; Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC–Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535.
- Horel, J.D. A Rotated Principal Component Analysis of the Interannual Variability of the Northern Hemisphere 500 mb Height Field. Mon. Weather Rev. 1981, 109, 2080–2092. [Google Scholar] [CrossRef] [Green Version]
- Opsteegh, J.D.; Van den Dool, H.M. Seasonal Differences in the Stationary Response of a Linearized Primitive Equation Model: Prospects for Long-Range Weather Forecasting? J. Atmos. Sci. 1980, 37, 2169–2185. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Karoly, D.J. The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef] [Green Version]
- Kornhuber, K.; Osprey, S.; Coumou, D.; Petri, S.; Petoukhov, V.; Rahmstorf, S.; Gray, L. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 2019, 14, 054002. [Google Scholar] [CrossRef]
- Fragkoulidis, G.; Wirth, V.; Bossmann, P.; Fink, A.H. Linking Northern Hemisphere temperature extremes to Rossby wave packets. Q. J. R. Meteorol. Soc. 2018, 144, 553–566. [Google Scholar] [CrossRef]
- Ward, P.J.; Jongman, B.; Kummu, M.; Dettinger, M.D.; Sperna Weiland, F.C.; Winsemius, H.C. Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc. Natl. Acad. Sci. USA 2014, 111, 15659–15664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaupp, F.; Hall, J.; Hochrainer-Stigler, S.; Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 2020, 10, 54–57. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Kutzbach, J.E. Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Weather Rev. 1970, 98, 708–716. [Google Scholar] [CrossRef]
- Mo, K.C.; Livezey, R.E. Tropical-Extratropical Geopotential Height Teleconnections during the Northern Hemisphere Winter. Mon. Weather Rev. 1986, 114, 2488–2515. [Google Scholar] [CrossRef]
- Cheng, X.; Wallace, J.M. Cluster Analysis of the Northern Hemisphere Wintertime 500-hPa Height Field: Spatial Patterns. J. Atmos. Sci. 1993, 50, 2674–2696. [Google Scholar] [CrossRef] [Green Version]
- Küttel, M.; Luterbacher, J.; Wanner, H. Multidecadal changes in winter circulation-climate relationship in Europe: Frequency variations, within-type modifications, and long-term trends. Clim. Dyn. 2011, 36, 957–972. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Blackmon, M.L. Observations of low-frequency atmospheric variability. In Large-Scale Dynamical Processes in the Atmosphere; Hoskins, B.J., Pearce, R.P., Eds.; Academic Press: New York, NY, USA, 1983; pp. 55–94. [Google Scholar]
- Rogers, R. The Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Weather Rev. 1984, 112, 1999–2015. [Google Scholar] [CrossRef]
- Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean Oscillation, Impact on Precipitation and Hydrology in Italy. In Conference on Climate Water; Academy of Finland: Helsinki, Finland, 1989; pp. 121–137. [Google Scholar]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Maugeri, M.; Nanni, T. Atmospheric circulation and precipitation in Italy for the last 50 years. Int. J. Climatol. 2002, 22, 1455–1471. [Google Scholar] [CrossRef]
- Palutikof, J.P. Analysis of Mediterranean climate data: Measured and modelled. In Mediterranean Climate: Variability and Trends; Bolle, H.J., Ed.; Springer: Berlin, Germany, 2003; pp. 125–132. [Google Scholar]
- Portis, D.H.; Walsh, J.E.; El Hamly, M.; Lamb, P.J. Seasonality of the North Atlantic Oscillation. J. Clim. 2001, 14, 2069–2078. [Google Scholar] [CrossRef]
- Criado-Aldeanueva, F.; Soto-Navarro, F.J. The Mediterranean Oscillation teleconnection index: Station-based versus principal component paradigms. Adv. Meteorol. 2013, 738501. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. 2008, 113, D06104. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Baldwin, M.P.; Birner, T.; Black, R.X.; Butler, A.H.; Calvo, N.; Davis, N.A.; Gerber, E.P.; Gillett, N.; Hardiman, S.; et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 2494–2505. [Google Scholar] [CrossRef]
- Seviour, J.M.; Gray, L.J.; Mitchell, D.M. Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 121, 1400–1413. [Google Scholar] [CrossRef] [Green Version]
- Marsland, S.J.; Bi, D.; Uotila, P.; Fiedler, R.; Griffies, S.M.; Lorbacher, K.; O’Farrell, S.; Sullivan, A.; Uhe, P.; Zhou, X.; et al. Evaluation of ACCESS climate model ocean diagnostics in CMIP5 simulations. Aust. Meteorol. Oceanogr. J. 2013, 63, 101–119. [Google Scholar] [CrossRef]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef]
- Rashid, H.A.; Sullivan, A.; Hirst, A.C.; Bi, D.; Zhou, X.; Marsland, S.J. Evaluation of El Niño–Southern Oscillation in the ACCESS coupled model simulations for CMIP5. Aust. Meteorol. Oceanogr. J. 2013, 63, 161–180. [Google Scholar] [CrossRef]
- Lu, Z.; Fu, Z.; Hua, L.; Yuan, N.; Chen, L. Evaluation of ENSO simulations in CMIP5 models: A new perspective based on percolation phase transition in complex networks. Sci. Rep. 2018, 8, 14912. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.-Q.; Li, W.-J.; Ren, H.-L. Representation of the Arctic Oscillation in the CMIP5 Models. Adv. Clim. Chang. Res. 2013, 4, 242–249. [Google Scholar] [CrossRef]
- Bellenger, H.; Guilyardi, E.; Leloup, J.; Lengaigne, M.; Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 2014, 42, 1999–2018. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 2014, 43, 1497–1511. [Google Scholar] [CrossRef]
- Ning, L.; Bradley, R.S. NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs. Clim. Dyn. 2016, 46, 1257–1276. [Google Scholar] [CrossRef]
- Belleflamme, A.; Fettweis, X.; Lang, C.; Erpicum, M. Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Clim. Dyn. 2013, 41, 2061–2080. [Google Scholar] [CrossRef]
- Stryhal, J.; Huth, R. Trends in winter circulation over the British Isles and central Europe in twenty-first century projections by 25 CMIP5 GCMs. Clim. Dyn. 2019, 52, 1063–1075. [Google Scholar] [CrossRef]
- Stryhal, J.; Huth, R. Classifications of winter atmospheric circulation patterns: Validation of CMIP5 GCMs over Europe and the North Atlantic. Clim. Dyn. 2019, 52, 3575–3598. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N.; Son, M. Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets. Water 2018, 10, 1793. [Google Scholar] [CrossRef] [Green Version]
- Sa’adi, Z.; Shiru, M.S.; Shahid, S.; Ismail, T. Selection of general circulation models for the projections of spatio-temporal changes in temperature of Borneo Island based on CMIP5. Theor. Appl. Climatol. 2020, 139, 351–371. [Google Scholar] [CrossRef]
- Kononova, N.K.; Lupo, A.R. Changes in the Dynamics of the Northern Hemisphere Atmospheric Circulation and the Relationship to Surface Temperature in the 20th and 21st Centuries. Atmosphere 2020, 11, 255. [Google Scholar] [CrossRef] [Green Version]
- Kristóf, E.; Barcza, Z.; Hollós, R.; Bartholy, J.; Pongrácz, R. Evaluation of Historical CMIP5 GCM Simulation Results Based on Detected Atmospheric Teleconnections. Atmosphere 2020, 11, 723. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Egger, J. On the theory of the steady perturbations in the troposphere. Tellus 1976, 28, 381–390. [Google Scholar] [CrossRef]
- Feldstein, S.B. The dynamics of NAO teleconnection pattern growth and decay. Q. J. R. Meteorol. Soc. 2003, 129, 901–924. [Google Scholar] [CrossRef]
- Poli, P.; Herschbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Bi, D.; Dix, M.; Marsland, S.J.; O’Farrell, S.; Rashid, H.A.; Uotila, P.; Hirst, A.C.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2013, 63, 41–64. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Fogli, P.G.; Manzini, E.; Vichi, M.; Oddo, P.; Navarra, A. Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. J. Clim. 2011, 24, 4368–4384. [Google Scholar] [CrossRef] [Green Version]
- Manzini, E.; Cagnazzo, C.; Fogli, P.G.; Bellucci, A.; Müller, W.A. Stratosphere-troposphere coupling at inter-decadal time scales: Implications for the North Atlantic Ocean. Geophys. Res. Lett. 2012, 39, L05801. [Google Scholar] [CrossRef] [Green Version]
- Voldoire, A.; Sanchez-Gomez, E.; Mélia, D.S.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef] [Green Version]
- Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; et al. The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. J. Clim. 2011, 24, 3484–3519. [Google Scholar] [CrossRef]
- Dunne, J.P.; John, J.G.; Adcroft, A.J.; Griffies, S.M.; Hallberg, R.W.; Shevliakova, E.; Stouffer, R.J.; Cooke, W.; Dunne, K.A.; Harrison, M.J.; et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. J. Clim. 2012, 25, 6646–6665. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.P.; John, J.G.; Shevliakova, E.; Stouffer, R.J.; Krasting, J.P.; Malyshev, S.; Milly, P.C.D.; Sentman, L.T.; Adcroft, A.J.; Cooke., W.; et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. J. Clim. 2013, 26, 2247–2267. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’Ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Raddatz, T.J.; Reick, C.H.; Knorr, W.; Kattge, J.; Roeckner, E.; Schnur, R.; Schnitzler, K.-G.; Wetzel, P.; Jungclaus, J. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim. Dyn. 2007, 29, 565–574. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Lorenz, S.J.; Timmreck, C.; Reick, C.H.; Brovkin, V.; Six, K.; Segschneider, J.; Giorgetta, M.A.; Crowley, T.J.; Pongratz, J.; et al. Climate and carbon-cycle variability over the last millennium. Clim. Past 2010, 6, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, S.; Yoshimura, H.; Hosaka, M.; Sakami, T.; Tsujino, H.; Hirabara, M.; Tanaka, T.Y.; Deushi, M.; Obata, A.; Nakano, H.; et al. Meteorological Research Institute-Earth System Model Version 1 (MRI-ESM1)—Model Description. Tech. Rep. Meteorol. Res. Inst. 2011, 64, 83. [Google Scholar] [CrossRef]
- Adachi, Y.; Yukimoto, S.; Deushi, M.; Obata, A.; Nakano, H.; Tanaka, T.Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; et al. Basic performance of a new earth system model of the Meteorological Research Institute. Pap. Meteorol. Geophys. 2013, 64, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Iversen, T.; Bentsen, M.; Bethke, I.; Debernard, J.B.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Kristjansson, J.E.; Medhaug, I.; Sand, M.; et al. The Norwegian Earth System Model, NorESM1-M—Part 2: Climate response and scenario projections. Geosci. Model Dev. 2012, 5, 2933–2998. [Google Scholar] [CrossRef]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoose, C.; et al. The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Schulzweida, U. CDO User Guide (Version 1.9.8); Max Planck Institute for Meteorology: Hamburg, Germany, 2019. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 15 August 2021).
- Pierce, D. ncdf4: Interface to Unidata NetCDF (Version 4 or Earlier) Format Data Files. R Package Version 1.16. 2019. Available online: https://CRAN.R-project.org/package=ncdf4 (accessed on 15 August 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Nychka, D.; Furrer, R.; Paige, J.; Sain, S. Fields: Tools for Spatial Data. R Package Version 9.9. 2017. Available online: https://cran.r-project.org/web/packages/fields/index.html (accessed on 15 August 2021). [CrossRef]
- Brownrigg, R.; Minka, T.P.; Deckmyn, A. Maps: Draw Geographical Maps. R Package Version 3.3.0. Original S Code by R.A. Becker, A.R. Wilks. 2018. Available online: https://CRAN.R-project.org/package=maps (accessed on 15 August 2021).
- Bivand, R.; Lewin-Koh, N. Maptools: Tools for Handling Spatial Objects. R Package Version 0.9-4. 2018. Available online: https://CRAN.R-project.org/package=maptools (accessed on 15 August 2021).
- McIlroy, D. Packaged for R by Brownrigg, R., Minka. T.P. Transition to Plan 9 Codebase by Bivand. R. Mapproj: Map Projections. R Package Version 1.2.6. 2018. Available online: https://CRAN.R-project.org/package=mapproj (accessed on 15 August 2021).
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R Package Version 1.1-2. 2014. Available online: https://CRAN.R-project.org/package=RcolorBrewer (accessed on 15 August 2021).
- Ooms, J. Magick: Advanced Graphics and Image-Processing in R. R Package Version 2.5.1. 2020. Available online: https://CRAN.R-project.org/package=magick (accessed on 15 August 2021).
- Pokovai, K.; Hollós, R.; Bottyán, E.; Kis, A.; Marton, T.; Pongrácz, R.; Pásztor, L.; Hidy, D.; Barcza, Z.; Fodor, N. Estimation of agro-ecosystem services using biogeochemical models. Q. J. Hung. Meteorol. Serv. 2020, 124, 209–225. [Google Scholar] [CrossRef]
- Kushnir, Y.; Wallace, J.M. Low-Frequency Variability in the Northern Hemisphere Winter: Geographical Distribution, Structure and Time-Scale Dependence. J. Atmos. Sci. 1989, 46, 3122–3143. [Google Scholar] [CrossRef] [Green Version]
- Stryhal, J.; Huth, R. Classifications of Winter Euro-Atlantic Circulation Patterns: An Intercomparison of Five Atmospheric Reanalyses. J. Clim. 2017, 30, 7847–7861. [Google Scholar] [CrossRef]
- Dünkeloh, A.; Jacobeit, J. Circulation Dynamics of Mediterranean Precipitation Variability 1948–98. Int. J. Climatol. 2003, 23, 1843–1866. [Google Scholar] [CrossRef]
- Criado-Aldeanueva, F.; Soto-Navarro, F.J.; García-Lafuente, J. Large-Scale Atmospheric Forcing Influencing the Long-Term Variability of Mediterranean Heat and Freshwater Budgets: Climatic Indices. J. Hydrometeorol. 2014, 15, 650–663. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Stanski, H.R.; Wilson, L.J.; Burrows, W.R. Survey of Common Verification Methods in Meteorology; WMO World Weather Watch Technical Report No.8, WMO/TD No. 358; Atmospheric Environment Service Forecast Research Division: Geneve, Switzerland, 1989. [Google Scholar]
- Mason, S.J.; Graham, N.E. Conditional Probabilities, Relative Operating Characteristics, and Relative Operating Levels. Weather Forecast. 1999, 14, 713–725. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kwon, H.-H.; Lee, J.-H.; Kim, T.-W. Probabilistic long-term hydrological drought forecast using Bayesian networks and drought propagation. Meteorol. Appl. 2020, 27, e1827. [Google Scholar] [CrossRef] [Green Version]
- De Castro Santos, M.A.; Vega-Oliveros, D.A.; Zhao, L.; Berton, L. Classifying El Niño-Southern Oscillation Combining Network Science and Machine Learning. IEEE Access 2020, 8, 55711–55723. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Faraggi, D.; Reiser, B.; Hu, J. Youden Index and the optimal threshold for markers with mass at zero. Stat. Med. 2008, 27, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Ács, F.; Kristóf, E.; Zsákai, A.; Kelemen, B.; Szabó, Z.; Marques Vieira, L.A. Weather in the Hungarian Lowland from the Point of View of Humans. Atmosphere 2021, 12, 84. [Google Scholar] [CrossRef]
- Charalampopoulos, I. The R Language as a Tool for Biometeorological Research. Atmosphere 2020, 11, 682. [Google Scholar] [CrossRef]
- Kuzmina, S.I.; Bengtsson, L.; Johannessen, O.M.; Drange, H.; Bobylev, L.P.; Miles, M.W. The North Atlantic Oscillation and greenhouse-gas forcing. Geophys. Res. Lett. 2005, 32, L04703. [Google Scholar] [CrossRef] [Green Version]
- Hilmer, M.; Jung, T. Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett. 2000, 27, 989–992. [Google Scholar] [CrossRef] [Green Version]
- Favre, A.; Gershunov, A. Extra-tropical cyclonic/anticyclonic activity in North-Eastern Pacific and air temperature extremes in Western North America. Clim. Dyn. 2006, 26, 617–629. [Google Scholar] [CrossRef]
No. | GCM | Type | Resolution of the AGCM (lon × lat) | No. of Vertical Levels and Highest Level | Institute and Country of Development |
---|---|---|---|---|---|
1 2 | ACCESS1-0 [57], ACCESS1-3 [57] | ESM | 1.9° × 1.9°, 1.9° × 1.3° | 38 (10 hPa) | Commonwealth Scientific and Industrial Research Organization (CSIRO), Bureau of Meteorology (BOM), Australia |
3 | CCSM4 [58] | ESM | 1.3° × 0.9° | 26 (3 hPa) | National Center for Atmospheric Research (NCAR), USA |
4 5 | CMCC-CM [59], CMCC-CMS * [60] | AOGCM | 0.8° × 0.8°, 1.9° × 1.9° | 31 (10 hPa), 95 (0.01 hPa) | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy |
6 | CNRM-CM5 [61] | ESM | 1.4 ° × 1.4° | 31 (10 hPa) | Centre National de Recherches Météorologiques (CNRM), Météo-France, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), France |
7 | GFDL-CM3 * [62] | AOGCM | 2.5° × 2° | 48 (1 hPa) | Geophysical Fluid Dynamics Laboratory (GFDL), USA |
8 9 | GFDL-ESM2G [63,64], GFDL-ESM2M [63,64] | ESM | 2.5° × 2° | 24 (3 hPa) | Geophysical Fluid Dynamics Laboratory (GFDL), USA |
10 | HadGEM2-AO [65] | AOGCM | 1.9° × 1.3° | 38 (40 km) | National Institute of Meteorological Research (NIMR), Korea Meteorological Administration, South Korea |
11 | HadGEM2-CC * [65] | ESM | 1.9° × 1.3° | 60 (85 km) | Met Office Hadley Centre (MOHC), UK |
12 | IPSL-CM5A-MR * [66] | ESM | 2.5° × 1.3° | 39 (0.04 hPa) | Institut Pierre-Simon Laplace (IPSL), France |
13 | MIROC5 [67] | AOGCM | 1.4° × 1.4° | 40 (3 hPa) | Atmosphere and Ocean Research Institute (University of Tokyo), National Institute for Environmental Studies (NIES), Agency for Marine-Earth Science and Technology (JAMSTEC), Japan |
14 15 16 | MPI-ESM-LR * [68,69], MPI-ESM-MR * [68,69], MPI-ESM-P * [68,69] | ESM | 1.9° × 1.9° | 47 (0.01 hPa), 95 (0.01 hPa), 47 (0.01 hPa) | Max Planck Institute for Meteorology (MPI), Germany |
17 18 | MRI-CGCM3 * [70,71], MRI-ESM1 * [70,71] | AOGCM, ESM | 1.1° × 1.1° | 48 (0.01 hPa) | Meteorological Research Institute (MRI), Japan |
19 | NorESM1-M [72,73] | ESM | 2.5° × 1.9° | 26 (2.917 hPa) | Norwegian Climate Centre, Norway |
The Grid Cell Was Part of a Teleconnection in the ERA-20C | The Grid Cell Was not Part of a Teleconnection in the ERA-20C | |
---|---|---|
The grid cell was part of a teleconnection in the GCM | true positive (TP) | false positive (FP) |
The grid cell was not part of a teleconnection in the GCM | false negative (FN) | true negative (TN) |
GCM/Reanalysis | 1951–1980 | 1956–1985 | 1961–1990 | 1966–1995 | 1971–2000 | 1976–2005 |
---|---|---|---|---|---|---|
NCEP/NCAR R1 | 1 | 3 | 1 | 1 | 1 | 1 |
ACCESS1-0 | 2 | 2 | 2 | 2 | 2 | 2 |
ACCESS1-3 | 1 | 2 | 2 | 1 | 2 | 2 |
CCSM4 | 1 | 1 | 1 | 1 | 1 | 3 |
CMCC-CM | 2 | 2 | 2 | 1 | 1 | 1 |
CMCC-CMS | 1 | 2 | 1 | 1 | 1 | 1 |
CNRM-CM5 | 1 | 1 | 1 | 1 | 1 | 1 |
GFDL-CM3 | 3 | 3 | 2 | 3 | 3 | 3 |
GFDL-ESM2G | 3 | 3 | 3 | 3 | 2 | 2 |
GFDL-ESM2M | 1 | 3 | 2 | 1 | 2 | 1 |
HadGEM2-AO | 3 | 3 | 2 | 1 | 1 | 1 |
HadGEM2-CC | 1 | 2 | 1 | 2 | 2 | 2 |
IPSL-CM5A-MR | 2 | 2 | 2 | 1 | 1 | 1 |
MIROC5 | 1 | 1 | 1 | 1 | 1 | 2 |
MPI-ESM-LR | 2 | 1 | 1 | 1 | 1 | 1 |
MPI-ESM-MR | 3 | 3 | 3 | 3 | 1 | 1 |
MPI-ESM-P | 2 | 2 | 1 | 1 | 1 | 1 |
MRI-CGCM3 | 2 | 2 | 2 | 1 | 1 | 1 |
MRI-ESM1 | 2 | 2 | 2 | 2 | 2 | 2 |
NorESM1-M | 3 | 2 | 2 | 1 | 3 | 3 |
Time Period | PAC | ATL | MED | ASIA | Average of All Clusters |
---|---|---|---|---|---|
1951–1980 | 1116 | 1939 | 1382 | 550 | 1247 |
1956–1985 | 878 | 1882 | 1569 | 505 | 1208 |
1961–1990 | 973 | 2078 | 1305 | 487 | 1211 |
1966–1995 | 833 | 1684 | 1204 | 616 | 1084 |
1971–2000 | 844 | 1726 | 1086 | 683 | 1085 |
1976–2005 | 968 | 1612 | 1206 | 545 | 1083 |
Averages of All Periods | 935 | 1820 | 1292 | 564 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristóf, E.; Hollós, R.; Barcza, Z.; Pongrácz, R.; Bartholy, J. Receiver Operating Characteristic Curve Analysis-Based Evaluation of GCMs Concerning Atmospheric Teleconnections. Atmosphere 2021, 12, 1236. https://doi.org/10.3390/atmos12101236
Kristóf E, Hollós R, Barcza Z, Pongrácz R, Bartholy J. Receiver Operating Characteristic Curve Analysis-Based Evaluation of GCMs Concerning Atmospheric Teleconnections. Atmosphere. 2021; 12(10):1236. https://doi.org/10.3390/atmos12101236
Chicago/Turabian StyleKristóf, Erzsébet, Roland Hollós, Zoltán Barcza, Rita Pongrácz, and Judit Bartholy. 2021. "Receiver Operating Characteristic Curve Analysis-Based Evaluation of GCMs Concerning Atmospheric Teleconnections" Atmosphere 12, no. 10: 1236. https://doi.org/10.3390/atmos12101236
APA StyleKristóf, E., Hollós, R., Barcza, Z., Pongrácz, R., & Bartholy, J. (2021). Receiver Operating Characteristic Curve Analysis-Based Evaluation of GCMs Concerning Atmospheric Teleconnections. Atmosphere, 12(10), 1236. https://doi.org/10.3390/atmos12101236