Impacts of Projected Urban Expansion on Rainfall and Temperature during Rainy Season in the Middle-Eastern Region in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Domain Setup, Configuration and Data Description
2.3. Analysis Procedures
3. Results
3.1. Land Use and Land Cover Scenarios
3.2. Effects of Urbanization on Local Rainfall
3.3. Effect of Urbanization on Local Temperature
3.3.1. Effects of Urbanization on Daily Maximum Air Temperature
3.3.2. Effect on Minimum Temperature
3.4. Effect of Urbanization on Local Climate
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economics and Social Affairs. World Urbanization Prospects 2018: Highlights, Population Division; UN: New York, NY, USA, 2019. [Google Scholar]
- United Nations Human Settlements Programme. Global State of Metropolis. Population Data Booklet; UNHSP: Vancouver, BC, Canada, 2020. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Balk, D.; Montgomery, M.R.; McGranahan, G.; Kim, D.; Mara, V.; Todd, M.; Buettner, T.; Dorélien, A. Mapping urban settlements and the risks of climate change in Africa, Asia and South America. In Population Dynamics and Climate Change; International Institute for Environment and Development: London, UK, 2009; Volume 80, p. 103. [Google Scholar]
- Small, C.; Nicholls, R.J. A alobal analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Hugo, G. Future demographic change and its interactions with migration and climate change. Glob. Environ. Chang. 2011, 21, S21–S33. [Google Scholar] [CrossRef]
- Brown, S.; Nicholls, R.J.; Woodroffe, C.D.; Hanson, S.; Hinkel, J.; Kebede, A.S.; Neumann, B.; Vafeidis, A.T. Sea-level rise impacts and responses: A global perspective. In Coastal Hazards; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–149. [Google Scholar]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hope, K., Sr. Climate change and poverty in Africa. Int. J. Sustain. Dev. World Ecol. 2009, 16, 451–461. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. The State of African Cities 2008: A Framework for Addressing Urban Challenges in Africa; UN-HABITAT: Nairobi, Kenya, 2008. [Google Scholar]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J. Exposure and vulnerability to climate extremes: Population and asset exposure to coastal flooding in Dar es Salaam, Tanzania. Reg. Environ. Chang. 2011, 12, 81–94. [Google Scholar] [CrossRef]
- Anande, D.M.; Luhunga, P.M. Assessment of socio-economic impacts of the December 2011 flood event in Dar es Salaam, Tanzania. Atmos. Clim. Sci. 2019, 9, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Ngailo, T.J.; Reuder, J.; Rutalebwa, E.; Nyimvua, S.; Mesquita, M. Modelling of Extreme maximum Rainfall using Extreme Value Theory for Tanzania. Int. J. Sci. Innov. Math. Res. 2016, 4, 34–45. [Google Scholar] [CrossRef]
- Dodman, D.; Brown, D.; Francis, K.; Hardoy, J.; Johnson, C.; Satterthwaite, D. Front Matter; International Institute for Environment and Development: London, UK, 2013; pp. i–iii. [Google Scholar]
- Chang’A, L.B.; Kijazi, A.L.; Luhunga, P.M.; Ng’Ongolo, H.K.; Mtongor, H.I. Spatial and Temporal Analysis of Rainfall and Temperature Extreme Indices in Tanzania. Atmos. Clim. Sci. 2017, 7, 525–539. [Google Scholar] [CrossRef] [Green Version]
- Luhunga, P.M.; Kijazi, A.L.; Chang’A, L.; Kondowe, A.; Ng’Ongolo, H.; Mtongori, H. Climate Change Projections for Tanzania Based on High-Resolution Regional Climate Models from the Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa. Front. Environ. Sci. 2018, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 2. Dynamical and thermodynamical response. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Moustaoui, M.; Mahalov, A.; Dudhia, J. Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Clim. Chang. 2013, 3, 37–41. [Google Scholar] [CrossRef]
- Seto, K.C.; Parnell, S.; Elmqvist, T. A global outlook on urbanization. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 1–12. [Google Scholar]
- Seto, K.C.; Shepherd, J.M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 2009, 1, 89–95. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Hunt, A.; Watkiss, P. Climate change impacts and adaptation in cities: A review of the literature. Clim. Chang. 2011, 104, 13–49. [Google Scholar] [CrossRef] [Green Version]
- Pathirana, A.; Denekew, H.B.; Veerbeek, W.; Zevenbergen, C.; Banda, A.T. Impact of urban growth-driven landuse change on microclimate and extreme precipitation—A sensitivity study. Atmos. Res. 2014, 138, 59–72. [Google Scholar] [CrossRef]
- Argüeso, D.; Evans, J.; Pitman, A.J.; Di Luca, A. Effects of City Expansion on Heat Stress under Climate Change Conditions. PLoS ONE 2015, 10, e0117066. [Google Scholar] [CrossRef]
- Shem, W.; Shepherd, M. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res. 2009, 92, 172–189. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, G.; Gao, H. Characteristics of Summer hourly extreme precipitation events and its local environmental influencing factors in Beijing under urbanization background. Atmosphere 2021, 12, 632. [Google Scholar] [CrossRef]
- Argüeso, D.; Evans, J.; Fita, L.; Bormann, K.J. Temperature response to future urbanization and climate change. Clim. Dyn. 2013, 42, 2183–2199. [Google Scholar] [CrossRef]
- Georgescu, M.; Miguez-Macho, G.; Steyaert, L.; Weaver, C. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes. J. Geophys. Res.: Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, S.; Georgescu, M.; Alfasi, N.; Kloog, I. Impact of future urbanization on a hot summer: A case study of Israel. Theor. Appl. Climatol. 2017, 128, 325–341. [Google Scholar] [CrossRef]
- Feser, F.; Rockel, B.; von Storch, H.; Winterfeldt, J.; Zahn, M. Regional climate models add value to global model data: A review and selected examples. Bull. Am. Meteorol. Soc. 2011, 92, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr.; Wilby, R.L. Regional climate downscaling: What’s the point? Eos Trans. Am. Geophys. Union 2012, 93, 52–53. [Google Scholar] [CrossRef]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Díaz, L.; Laprise, R.; Sushama, L.; Martynov, A.; Winger, K.; Dugas, B. Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 2012, 40, 1415–1433. [Google Scholar] [CrossRef] [Green Version]
- Forget, Y.; Shimoni, M.; Gilbert, M.; Linard, C. Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa. Remote Sens. 2021, 13, 525. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2016, 17, 1585–1600. [Google Scholar] [CrossRef]
- Kukkonen, M.O.; Muhammad, M.J.; Käyhkö, N.; Luoto, M. Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns and effects of alternative planning approaches. Land Use Policy 2018, 71, 554–565. [Google Scholar] [CrossRef]
- Kondowe, A.; Aniskina, O. The Role of the WRF Model Parameterization Schemes on the Quakity of Meteorological Variables Forecast over Tanzania; World Science: Paris, France, 2015; p. 1. [Google Scholar]
- Paul, S.; Ghosh, S.; Mathew, M.; Devanand, A.; Karmakar, S.; Niyogi, D. Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sati, A.P.; Mohan, M. The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India. Theor. Appl. Clim. 2017, 134, 309–323. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4; No. NCAR/TN-556+STR, NCAR Technical Note; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar] [CrossRef]
- International Federation of Red Cross and Red Crescent Societies. Tanzania: Floods—Emergency Plan of Action; IFRC: Geneva, Switzerland, 30 April 2018. [Google Scholar]
- Kondowe, A.L. mpact of convective parameterization schemes on the quality of rainfall forecast over Tanzania using WRF-model. Nat. Sci. 2014, 6, 691. [Google Scholar] [CrossRef] [Green Version]
- Luhunga, P.M.; Djolov, G.; Mutayoba, E. Moist potential vorticity vector for diagnosis of heavy rainfall events in Tanzania. J. Geosci. Environ. Prot. 2016, 4, 128. [Google Scholar] [CrossRef] [Green Version]
- Lungo, A.; Kim, S.; Jiang, M.; Cho, G.; Kim, Y. Sensitivity Study of WRF Simulations over Tanzania for Extreme Events during Wet and Dry Seasons. Atmosphere 2020, 11, 459. [Google Scholar] [CrossRef]
- Ngailo, T.J.; Shaban, N.; Reuder, J.; Mesquita, M.D.S.; Rutalebwa, E.; Mugume, I.; Sangalungembe, C. Assessing Weather Research and Forecasting (WRF) Model parameterization schemes skill to simulate extreme rainfall events over Dar es Salaam on 21 December 2011. J. Geosci. Environ. Prot. 2018, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Space Phys. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Sun, W.-Y. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteorol. Clim. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Clim. 2012, 51, 300–316. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- NCEP-GFS, N.G. 0.25 Degree Global Forecast Grids Historical Archive; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- Friedl, M.; Strahler, A.; Hodges, J.; Hall, F.; Collatz, G.; Meeson, B.; Los, S.; Brown De Colstoun, E.; Landis, D. ISLSCP II MODIS (Collection 4) IGPB Land Cover, 2000–2001; ORNL DAAC: Oak Ridge, TN, USA, 2010. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, J.; Wang, S.; Niu, X.; Wang, L. Uncertainty of land surface model and land use data on WRF model simulations over China. Clim. Dyn. 2021, 57, 1–19. [Google Scholar] [CrossRef]
- Güneralp, B.; Seto, K. Futures of global urban expansion: Uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 2013, 8, 014025. [Google Scholar] [CrossRef]
- Nunalee, C.G.; Horváth, Á.; Basu, S. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data. Geosci. Model. Dev. 2015, 8, 2645–2653. [Google Scholar] [CrossRef] [Green Version]
- Yeung, P.S.; Fung, J.C.-H.; Ren, C.; Xu, Y.; Huang, K.; Leng, J.; Wong, M.M.-F. Investigating future urbanization’s impact on local climate under different climate change scenarios in MEGA-urban regions: A case study of the Pearl River Delta, China. Atmosphere 2020, 11, 771. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Z.; Zhang, Y.; Xu, W.; Lv, X.; Liu, Y.; Lyu, H.; Li, X.; Xiao, J.; Ma, F. Study on land-use changes and theirimpacts on air pollution in Chengdu. Atmosphere 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Li, X.X.; Koh, T.Y.; Panda, J.; Norford, L.K. Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. J. Geophys. Res. Atmos. 2016, 121, 4386–4403. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Park, M.-S.; Choi, Y. Planetary Boundary-Layer Structure at an Inland Urban Site under Sea Breeze Penetration. Asia-Pac. J. Atmos. Sci. 2021, 57, 701–715. [Google Scholar] [CrossRef]
- Li, J.Z.; Wang, Z.; Liu, X.; Fath, B.D.; Liu, X.; Xu, Y.; Hutjes, R.; Kroeze, C. Causal relationship in the interaction between land cover change and underlying surface climate in the grassland ecosystems in China. Sci. Total Environ. 2018, 647, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Xu, Y.; Sun, Y.; Wu, M.; Zhao, B. Urbanization-driven changes in land-climate dynamics: A case study of Haihe River Basin, China. Remote Sens. 2020, 12, 2701. [Google Scholar] [CrossRef]
- Park, M.-S.; Chae, J.-H. Features of sea–land-breeze circulation over the Seoul Metropolitan Area. Geosci. Lett. 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-S.; Park, S.-H.; Chae, J.-H.; Choi, M.-H.; Song, Y.; Kang, M.; Roh, J.-W. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech. 2017, 10, 1575–1594. [Google Scholar] [CrossRef]
- Sertel, E.; Robock, A.; Ormeci, C. Impacts of land cover data quality on regional climate simulations. Int. J. Clim. 2009, 30, 1942–1953. [Google Scholar] [CrossRef]
Physics Options | Specifications | References |
---|---|---|
Short-wave radiation | Dudhia Shortwave Scheme | [48] |
Long-wave radiation | Rapid Radiative Transfer Model (RRTM) scheme | [49] |
Microphysics | Lin et al. scheme | [50] |
Cumulus | Improved Grell-Devenyi ensemble scheme | [51] |
Boundary layer | Asymmetric Convective Model (ACM2) | [52] |
Surface layer | Revised MM5 surface layer scheme | [53] |
Land-surface | Unified Noah land surface model (Noah LSM) | [54] |
Stations | Latitude | Longitude | Elevation (m) |
---|---|---|---|
DAR | −6.883° | 39.200° | 55.5 |
DAR-PORT | −6.833° | 39.300° | 50 |
KIBAHA | −6.833° | 38.633° | 167 |
MOROGORO | −6.833° | 37.650° | 526 |
LULC | Current | Low-Urbanization | High-Urbanization |
---|---|---|---|
Urban | 0.1 | 1.3 | 7.5 |
Water | 18.6 | 18.6 | 18.6 |
Savannas | 71.3 | 70.5 | 65.0 |
Forest | 7.3 | 7.0 | 6.4 |
Crop | 2.7 | 2.6 | 2.5 |
STATIONS | DAR | DAR-PORT | MOROGORO | KIBAHA | ||||
---|---|---|---|---|---|---|---|---|
future scenarios | Urb-30 | Urb-99 | Urb-30 | Urb-99 | Urb-30 | Urb-99 | Urb-30 | Urb-99 |
10 April 2018 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 April 2018 | 54.9 | 7.3 | 31.4 | 10.5 | 0.3 | 0.4 | −1.7 | −4.3 |
12 April 2018 | 12.2 | 43.5 | 9.8 | −12.4 | 4.9 | 1.9 | 0.7 | 23 |
13 April 2018 | −13.4 | −18 | −0.6 | −7.7 | −17 | 2.3 | −4 | −3 |
14 April 2018 | 5.3 | −3.7 | −1.2 | -3 | 0 | 12.7 | −12.2 | −11.4 |
15 April 2018 | 52.4 | 2.7 | 21.5 | 5.8 | 0 | 0.2 | 0.3 | −2.7 |
16 April 2018 | 8.5 | 3.5 | 8.7 | −1.1 | 0.4 | 0.7 | 2.4 | 0.6 |
17 April 2018 | −3.8 | −3.7 | 0 | 2 | 0 | 0 | 0 | 0 |
18 April 2018 | 0 | 0 | 0 | 4.4 | 0 | 0 | 0 | 0 |
19 April 2018 | 0 | 0.1 | 0.8 | 9 | 0 | 0 | 0 | 0 |
STATIONS | DAR | DAR-PORT | MOROGORO | KIBAHA | ||||
---|---|---|---|---|---|---|---|---|
Future scenarios | Urb-low | Urb-high | Urb-low | Urb-high | Urb-low | Urb-high | Urb-low | Urb-high |
10 April 2018 | 1.6 | 2.2 | 0.3 | 0.7 | 1.1 | 1.1 | 0.0 | 0.2 |
11 April 2018 | 0.3 | 1.7 | 0.0 | 1.3 | 1.1 | 0.7 | −0.3 | 0.2 |
12 April 2018 | 0.4 | 1.0 | −0.6 | 0.9 | 1.2 | 1.4 | 0.6 | 0.3 |
13 April 2018 | 1.2 | 1.7 | 0.8 | 1.3 | 0.3 | 1.1 | 1.1 | 0.8 |
14 April 2018 | 1.0 | 1.8 | −0.7 | 1.4 | 1.0 | 1.3 | 0.8 | 0.9 |
15 April 2018 | 0.6 | 2.5 | 0.5 | 2.0 | 1.0 | 1.2 | −0.2 | −1.0 |
16 April 2018 | 0.4 | 2.0 | −0.5 | 1.2 | 0.9 | 1.5 | 0.1 | −0.3 |
17 April 2018 | 2.2 | 2.5 | 0.8 | 1.1 | 1.8 | 2.2 | 0.0 | −0.2 |
18 April 2018 | 1.2 | 2.2 | 0.6 | 1.3 | 0.9 | 1.7 | −0.1 | 0.0 |
19 April 2018 | 1.2 | 2.1 | 0.7 | −0.3 | 1.3 | 1.8 | −0.1 | 0.3 |
STATIONS | DAR | DAR-PORT | MOROGORO | KIBAHA | ||||
---|---|---|---|---|---|---|---|---|
Future scenarios | Urb-low | Urb-high | Urb-low | Urb-high | Urb-low | Urb-high | Urb-low | Urb-high |
10 April 2018 | 1.5 | 2.3 | −0.2 | 0.8 | 0.9 | 1.4 | 0 | 0 |
11 April 2018 | −1.5 | 1.3 | −1.5 | 0.3 | 0.8 | 0 | −1.2 | −0.9 |
12 April 2018 | 1 | 1.8 | 0.7 | 1.1 | 0.4 | 0.4 | 0.3 | −0.2 |
13 April 2018 | 1.3 | 1.9 | 1.3 | 1.8 | −0.4 | 0.9 | 2.1 | 0.9 |
14 April 2018 | 0.5 | 2 | −1.8 | 0.9 | −0.4 | 0.2 | 0.2 | 1.2 |
15 April 2018 | 0.2 | 3 | 0.3 | 2.1 | 0.2 | 0.5 | −0.4 | −2.7 |
16 April 2018 | 1.1 | 1.2 | −0.2 | 0.3 | 0.4 | 1.3 | −0.9 | −0.1 |
17 April 2018 | 2.2 | 1.9 | 0.6 | 0.2 | 1.4 | 1.9 | −0.3 | −0.3 |
18 April 2018 | 0.6 | 1.3 | 0.2 | 0.9 | 1 | 1.8 | 0.1 | 0.2 |
19 April 2018 | 0.4 | 1 | 0.1 | 0.9 | 0.2 | 0.9 | −0.1 | 0.2 |
STATIONS | DAR | DAR-PORT | MOROGORO | KIBAHA | ||||
---|---|---|---|---|---|---|---|---|
Future scenarios | Urb-low | Urb-high | Urb-low | Urb-high | Urb-low | Urb-high | Urb-low | Urb-high |
10 April 2018 | 1.6 | 2.1 | 0.7 | 0.7 | 1.2 | 0.8 | 0 | 0.3 |
11 April 2018 | 2.1 | 2.1 | 1.5 | 2.3 | 1.4 | 1.4 | 0.7 | 1.3 |
12 April 2018 | −0.3 | 0.2 | −1.8 | 0.7 | 2 | 2.4 | 0.8 | 0.7 |
13 April 2018 | 1 | 1.4 | 0.2 | 0.8 | 1 | 1.2 | 0.1 | 0.6 |
14 April 2018 | 1.5 | 1.6 | 0.5 | 1.9 | 2.3 | 2.3 | 1.4 | 0.6 |
15 April 2018 | 1 | 2 | 0.7 | 1.8 | 1.7 | 1.9 | 0 | 0.8 |
16 April 2018 | −0.2 | 2.8 | −0.8 | 2.1 | 1.4 | 1.7 | 1 | −0.5 |
17 April 2018 | 2.2 | 3 | 1 | 2 | 2.1 | 2.4 | 0.3 | −0.1 |
18 April 2018 | 1.7 | 3.1 | 1 | 1.6 | 0.9 | 1.5 | −0.2 | −0.2 |
19 April 2018 | 1.9 | 3.2 | 1.3 | −1.5 | 2.3 | 2.6 | 0 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anande, D.M.; Park, M.-S. Impacts of Projected Urban Expansion on Rainfall and Temperature during Rainy Season in the Middle-Eastern Region in Tanzania. Atmosphere 2021, 12, 1234. https://doi.org/10.3390/atmos12101234
Anande DM, Park M-S. Impacts of Projected Urban Expansion on Rainfall and Temperature during Rainy Season in the Middle-Eastern Region in Tanzania. Atmosphere. 2021; 12(10):1234. https://doi.org/10.3390/atmos12101234
Chicago/Turabian StyleAnande, Doreen M., and Moon-Soo Park. 2021. "Impacts of Projected Urban Expansion on Rainfall and Temperature during Rainy Season in the Middle-Eastern Region in Tanzania" Atmosphere 12, no. 10: 1234. https://doi.org/10.3390/atmos12101234
APA StyleAnande, D. M., & Park, M. -S. (2021). Impacts of Projected Urban Expansion on Rainfall and Temperature during Rainy Season in the Middle-Eastern Region in Tanzania. Atmosphere, 12(10), 1234. https://doi.org/10.3390/atmos12101234