Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers
Abstract
:1. Introduction
2. Experiments
3. Experimental Results and Their Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Wotton, B.M.; Flannigan, M.D.; Marshall, G.A. Potential Climate Change Impacts on Fire Intensity and Wildfire Suppression Thresholds in Canada. Environ. Res. Lett. 2017, 12, 1–12. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin? A review. Int. J. Wildl. Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Larkin, N.K.; Raffuse, S.M.; Strand, T.M. Wildland fire emissions, carbon, and climate: U.S. emissions inventories. For. Ecol. Manag. 2014, 317, 61–69. [Google Scholar] [CrossRef]
- Voulgarakis, A.; Field, R.D. Fire Influences on Atmospheric Composition, Air Quality and Climate. Curr. Pollut. Rep. 2015, 1, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, A.A.; Smirnov, N.S.; Korotkov, V.N.; Romanovskaya, A.A. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic. Atmos. Ocean. Opt. 2015, 28, 512–520. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I.; Dzhola, A.V. The confluence of Siberian fires on the content of carbon monoxide in the atmosphere over the European part of Russia in the summer of 2016. Atmos. Ocean. Opt. 2017, 30, 146–152. [Google Scholar]
- Popovicheva, O.B.; Kozlov, V.S.; Rakhimov, R.F.; Shmargunov, V.P.; Kireyeva, Y.D.; Persiantseva, N.M.; Timofeyev, M.A.; Engling, G.; Elephteriadis, K.; Diapouli, L.; et al. Optical-microphysical and physicochemical characteristics of combustion fumes of Siberian biomass: Experiments in an aerosol chamber. Atmos. Ocean. Opt. 2016, 29, 323–331. [Google Scholar] [CrossRef]
- Alves, N.D.; Brito, J.; Caumo, S.; Arana, A.; Hacon, S.; Artaxo, P.; Hillamo, R.; Teinilä, K.; Medeiros, S.; Vasconcellos, P. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmos. Environ. 2015, 120, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Pani, S.K.; Wang, S.; Lin, N.; Chantara, S.; Lee, C.; Thepnuan, D. Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environ. Pollut. 2019, 259, 113871. [Google Scholar] [CrossRef]
- Mkoma, S.L.; Kawamura, K.; Fu, P.Q. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys. 2013, 13, 10325–10338. [Google Scholar] [CrossRef] [Green Version]
- Yokelson, R.J.; Burling, I.R.; Urbanski, S.P.; Atlas, E.L.; Adachi, K.; Buseck, P.R.; Wiedinmyer, C.; Akagi, S.K.; Toohey, D.W.; Wold, C.E. Trace gas and particle emissions from open biomass burning in Mexico. Atmos. Chem. Phys. 2011, 11, 6787–6808. [Google Scholar] [CrossRef] [Green Version]
- Santín, C.; Doerr, S.; Kane, E.; Masiello, C.; Ohlson, M.; Rosa, J.M.; Preston, C.; Dittmar, T. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 2016, 22, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Sommers, W.; Loehman, R.; Hardy, C.C. Wildland fire emissions, carbon, and climate: Science overview and knowledge needs. For. Ecol. Manag. 2014, 317, 1–8. [Google Scholar] [CrossRef]
- Adams, J.S.; Williams, D.W.; Tregellas-Williams, J. Air velocity, temperature, and radiant-heat measurements within and around a large free-burning fire. Proc. Combust. Inst. 1973, 14, 1045–1052. [Google Scholar] [CrossRef]
- Albini, F.A. Spot Fire Distance from Burning Trees—A Predictive Model; USDA Forest Service, Intermountain Forest and Range Experiment Station INT-GTR-56: Ogden, UT, USA, 1979; p. 73. [Google Scholar]
- Cohen, J.D. A Site-Specific Approach for Assessing the Fire Risk to Structures at the Wildland Urban Interface. Fire and the Environment: Ecological and Cultural Perspectives. In Proceedings of the An International Symposium SE-69, Ashville, NC, USA, 20–24 March 1991; pp. 252–256. [Google Scholar]
- Muraszew, A.; Fedele, J.F. Statistical Model for Spot Fire Spread; The Aerospace Corporation: Los Angeles, CA, USA, 1976. [Google Scholar]
- Taylor, R.J.; Evans, S.T.; King, N.K.; Stephens, E.T.; Packham, D.R.; Vines, R.G. Convective activity above a large-scale bushfire. J. Appl. Meteorol. Climatol 1973, 12, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Quintiere, J.G. Canadian mass fire experiment. J. Fire Prot. Engr. 1993, 5, 67–78. [Google Scholar] [CrossRef]
- Grishin, A.M.; Yakimov, A.S. Mathematical modeling of the initiation and spread of peat fires. J. Eng. Phys. Thermophys. 2011, 84, 1047–1057. [Google Scholar] [CrossRef]
- Grishin, A.M. Mathematical Modeling of Forest Fires and New Methods of Fighting Them; Publishing House of the Tomsk State University: Tomsk, Russia, 1997. [Google Scholar]
- Stocks, B.J.; Alexander, M.E.; Wotton, B.M.; Stefner, C.N.; Flannigan, M.D.; Taylor, S.W.; Lavoie, N.; Mason, J.A.; Hartley, G.R.; Maffey, M.E.; et al. Crown fire behaviour in a northern jack pine—Black spruce forest. Can. J. For. Res. 2004, 34, 1548–1560. [Google Scholar] [CrossRef] [Green Version]
- Goldammer, J.G.; Furyaev, V. (Eds.) Fire in Ecosystems of Boreal Eurasia, Fire in Ecosystems of Boreal Eurasia; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Boulet, P.; Parent, G.; Collin, A.; Acem, Z.; Porterie, B.; Clerc, J.P.; Consalvi, J.L.; Kaiss, A. Spectral emission of flames from laboratory-scale vegetation fires. Int. J. Wildl. Fire 2009, 18, 875–884. [Google Scholar] [CrossRef]
- Gould, J.; McCaw, W.; Cheney, N.; Ellis, P.; Knight, I.; Sullivan, A. Project vesta: Fire in dry eucalypt forest. Int. J. Wildl. Fire 2019, 18, 875–884. [Google Scholar]
- Hinzman, L.D.; Fukuda, M.; Sandberg, D.V.; Chapin, F.S.; Dash, D. FROSTFIRE: An experimental approach to predicting the climate feedbacks from the changing boreal fire regime. J. Geophys. Res. D Atmos. 2003, 108, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kochanski, A.K.; Jenkins, M.A.; Mandel, J.; Beezley, J.D.; Clements, C.B.; Krueger, S. Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment. Geosci. Model. Dev. 2013, 6, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
- Pastor, E.; Àgueda, A.; Andrade-Cetto, J.; Muñoz, M.; Pérez, Y.; Planas, E. Computing the rate of spread of linear flame fronts by thermal image processing. Fire Saf. J. 2006, 41, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Prichard, S.; Larkin, N.S.; Ottmar, R.; French, N.H.F.; Baker, K.; Brown, T.; Clements, C.; Dickinson, M.; Hudak, A.; Kochanski, A.; et al. The Fire and Smoke Model Evaluation Experiment-A plan for integrated, large fire-atmosphere field campaigns. Atmosphere 2019, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Hurtado, E.; Pey, J.; Baeza, M.J.; Carrara, A.; Llovet, J.; Querol, X.; Alastuey, A.; Vallejo, V.R. Carbon emissions in Mediterranean shrubland wildfires: An experimental approach. Atmos. Environ. 2013, 69, 86–93. [Google Scholar] [CrossRef]
- Howard, D.; Macsween, K.; Edwards, G.C.; Desservettaz, M.; Guérette, E.A.; Paton-Walsh, C.; Surawski, N.C.; Sullivan, A.L.; Weston, C.; Volkova, L.; et al. Investigation of mercury emissions from burning of Australian eucalypt forest surface fuels using a combustion wind tunnel and field observations. Atmos. Environ. 2019, 202, 17–27. [Google Scholar] [CrossRef]
- Solomos, S.; Gialitaki, A.; Marinou, E.; Proestakis, E.; Amiridis, V.; Baars, H.; Komppula, M.; Ansmann, A. Modeling and remote sensing of an indirect Pyro-Cb formation and biomass transport from Portugal wildfires towards Europe. Atmos. Environ. 2019, 206, 303–315. [Google Scholar] [CrossRef]
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildl. Fire 2009, 18, 906–920. [Google Scholar] [CrossRef] [Green Version]
- Seiler, W.; Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Hao, W.M.; Nordgren, B. The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty. Atmos. Chem. Phys. 2011, 11, 12973–13000. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qu, J.J.; Wang, W.; Hao, X. Estimates of Wildland Fire Emissions. In Remote Sensing Modeling and Applications to Wildland Fires; Qu, J.J., Sommers, W., Yang, R., Riebau, A., Kafatos, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9, pp. 117–133. [Google Scholar]
- Colarco, P.R.; Schoeberl, M.R.; Doddridge, B.G.; Marufu, L.T.; Torres, O.; Welton, E.J. Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties. J. Geophys. Res. Atmos. 2004, 109, 1–12. [Google Scholar] [CrossRef]
- Liu, Y. Sensitivity of air quality simulation to smoke plume rise. J. Appl. Remote Sens. 2008, 2, 1–12. [Google Scholar] [CrossRef]
- Goodrick, S.L.; Achtemeier, G.L.; Larkin, N.K.; Liu, Y.; Strand, T.M. Modelling smoke transport from wildland fires: A review. Int. J. Wildl. Fire 2013, 22, 83–94. [Google Scholar] [CrossRef]
- Grishin, A.M.; Filkov, A.I.; Loboda, Y.L.; Kuznetsov, V.T.; Reyno, V.V.; Rudi, Y.A. Physical modeling of steppe fires in natural conditions. J. Fire Saf. 2010, 2, 100–105. [Google Scholar]
- Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Ivlev, G.A.; Kozlov, A.V.; Pestunov, D.A.; Pokrovskiy, Y.V.; Tolmachev, G.N.; Fofonov, A.V. Posts for monitoring greenhouse and oxidizing gases. Atmos. Ocean. Opt. 2007, 20, 53–61. [Google Scholar]
- Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences (IMCES SB RAS). Available online: http://www.imces.ru/index.php?rm=news&action=view&id=402 (accessed on 25 December 2020).
- Loboda, E.L.; Reino, V.V.; Agafontsev, M.V. Choice of a spectral range for measuring temperature fields in a flame and recording high-temperature objects screened by the flame using IR diagnostic methods. Russ. Phys. J. 2015, 58, 278–282. [Google Scholar] [CrossRef]
- Grishin, A.M.; Filkov, A.I.; Loboda, E.L.; Reyno, V.V.; Kozlov, A.V.; Kuznetsov, V.T.; Kasymov, D.P.; Andreyuk, S.M.; Ivanov, A.I.; Stolyarchuk, N.D. A field experiment on grass fire effects on wooden constructions and peat layer ignition. Int. J. Wildl. Fire 2014, 23, 445–449. [Google Scholar] [CrossRef]
- Grishin, A.M.; Filkov, A.I.; Loboda, E.L.; Reyno, V.V.; Kuznetsov, V.T. Field experimental studies of the effects of field fires on wooden fencing and peat. J. Fire Saf. 2013, 3, 52–58. [Google Scholar]
- Grishin, A.M.; Filkov, A.I.; Loboda, E.L.; Reyno, V.V.; Rudi, Y.A.; Kuznetsov, V.T.; Karavayev, V.V. Experimental studies of the occurrence and spread of a steppe fire in natural conditions. Tomsk State Univ. J. Math. Mech. 2011, 2, 91–102. [Google Scholar]
- Loboda, E.L.; Kasymov, D.P.; Filkov, A.I.; Reyno, V.V.; Agafontsev, M.V. Some Aspects of Research in the Field and Laboratory Conditions of Wildfires Using Thermography. In Proceedings of the XXX International Research and Practical Conference «Current Problems of Fire Safety», Moscow, Russia, 4–5 July 2017; pp. 295–300. [Google Scholar]
- Loboda, E.L.; Matvienko, O.V.; Vavilov, V.P.; Reyno, V.V. Infrared thermographic evaluation of flame turbulence scale. Infrared Phys. Technol. 2015, 72, 1–7. [Google Scholar] [CrossRef]
- Shchelkin, K.I. Selected Works; Loboiko, B.G., Ed.; VNIITF Publisher: Snezhinsk, Russia, 2011; p. 268. [Google Scholar]
- Kochanski, A.K.; Fournier, A.; Mandel, J. Experimental design of a prescribed burn instrumentation. Atmosphere 2018, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Matveev, L.T. General Meteorology Course: Atmospheric Physics; Hydrometeoizdat: Leningrad, USSR, 1984; p. 738. [Google Scholar]
- Zuev, V.E. Propagation of Visible and Infrared Waves in the Atmosphere; Sovetskoe Radio: Moscow, Russia, 1970. [Google Scholar]
- Loboda, E.L.; Anufriev, I.S.; Agafontsev, M.V.; Kopyev, E.P.; Shadrin, E.Y.; Reyno, V.V.; Vavilov, V.P.; Lutsenko, A.V. Evaluating characteristics of turbulent flames by using IR thermography and PIV. Infrared Phys. Technol. 2018, 92, 240–243. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loboda, E.; Kasymov, D.; Agafontsev, M.; Reyno, V.; Gordeev, Y.; Tarakanova, V.; Martynov, P.; Loboda, Y.; Orlov, K.; Savin, K.; et al. Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers. Atmosphere 2021, 12, 75. https://doi.org/10.3390/atmos12010075
Loboda E, Kasymov D, Agafontsev M, Reyno V, Gordeev Y, Tarakanova V, Martynov P, Loboda Y, Orlov K, Savin K, et al. Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers. Atmosphere. 2021; 12(1):75. https://doi.org/10.3390/atmos12010075
Chicago/Turabian StyleLoboda, Egor, Denis Kasymov, Mikhail Agafontsev, Vladimir Reyno, Yevgeniy Gordeev, Veronika Tarakanova, Pavel Martynov, Yuliya Loboda, Konstantin Orlov, Kirill Savin, and et al. 2021. "Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers" Atmosphere 12, no. 1: 75. https://doi.org/10.3390/atmos12010075
APA StyleLoboda, E., Kasymov, D., Agafontsev, M., Reyno, V., Gordeev, Y., Tarakanova, V., Martynov, P., Loboda, Y., Orlov, K., Savin, K., & Dutov, A. (2021). Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers. Atmosphere, 12(1), 75. https://doi.org/10.3390/atmos12010075