Direct Measurement of Mercury Deposition at Rural and Suburban Sites in Washington State, USA
Abstract
:1. Introduction
2. Experiments
2.1. Sampling Sites
2.2. Dry Deposition Sampling
2.3. Wet Deposition Sampling
3. Results
3.1. Dry Deposition
3.2. Wet Deposition
4. Discussion
4.1. Dry Deposition
4.2. Wet Deposition
4.3. Model Versus Direct Measurements of Hg Deposition
5. Conclusions
- (1)
- Because of their relative simplicity and robustness, direct measurement approaches such as those described in this study are useful in assessing temporal and spatial patterns of Hg deposition, and for comparing results to less direct estimates of Hg deposition and estimates from numerical air quality models.
- (2)
- Hg deposition can be substantial in rural regions with significant agricultural activities. Hg deposition rates at the rural study site (Pullman, Washington) were similar to or higher than deposition rates observed at the suburban study site (Puyallup, Washington), which was likely influenced by regional urban and industrial sources of Hg.
- (3)
- In rural agricultural areas, agricultural burning and associated re-emission and transport of previously deposited Hg can lead to elevated levels of Hg dry deposition. Rates of dry deposition in Pullman during smoky conditions indicative of agricultural burning were ~2.5 times the deposition rates observed during non-smoky conditions.
- (4)
- Hg concentrations in precipitation correlated negatively with precipitation depth, suggesting that scavenging of PBM and GOM from the atmosphere at the beginning of storm events was an important wet deposition process.
- (5)
- Ephemeral, short-term storm events at the rural Pullman site had elevated Hg concentrations. Mass balance estimates indicated that these Hg-rich storm events may account for a meaningful fraction (~20%) of dry season Hg deposition.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyman, S.N.; Cheng, I.; Gratz, L.E.; Weiss-Penzias, P.; Zhang, L. An updated review of atmospheric mercury. Sci. Total Environ. 2020, 707, 135575. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—an overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar]
- United Nations Environment Programme (UNEP). Global Mercury Assessment 2019: Sources, Emissions, Releases and Environmental Transport; UNEP Chemicals Branch: Geneva, Switzerland, 2019. [Google Scholar]
- Lindberg, S.E.; Bullock, R.O.; Ebinghaus, R.; Engstrom, D.R.; Feng, X.; Fitzgerald, W.F.; Pirrone, N.; Prestbo, E.M.; Seignuer, C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition: Panel on source attribution of atmospheric mercury. Ambio 2007, 36, 19–32. [Google Scholar]
- Swain, E.; Jakus, P.; Rice, G.; Lupi, F.; Maxson, P.; Pacyna, J.; Penn, A.; Spiegel, S.; Veiga, M. Socioeconomic consequences of mercury use and pollution. Ambio 2007, 36, 45–61. [Google Scholar]
- United State Environmental Protection Agency (USEPA). Biennial National Listing of Fish Advisory; EPA-820-F-11-014; USEPA: Washington, DC, USA, 2011.
- Jaffe, D.; Prestbo, E.; Swartzendruber, P.; Weisspenzias, P.; Kato, S.; Takami, A.; Hatakeyama, S.; Kajii, Y. Export of atmospheric mercury from Asia. Atmos. Environ. 2005, 39, 3029–3038. [Google Scholar] [CrossRef]
- Lin, C.-J.; Pehkonen, S.O. The chemistry of atmospheric mercury: A review. Atmos. Environ. 1999, 33, 2067–2079. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wright, L.P.; Blanchard, P. A review of current knowledge concerning dry deposition of atmospheric mercury. Atmos. Environ. 2009, 43, 5853–5864. [Google Scholar] [CrossRef]
- Hall, N.L.; Dvonch, J.T.; Marsik, F.J.; Barres, J.A.; Landis, M. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition. Int. J. Environ. Res. Public Health 2017, 14, 173. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lyman, S.N.; Hartman, J.S.; Gustin, M.S. A review of passive sampling systems for ambient air mercury measurements. Environ. Sci. Process. Impacts 2014, 16, 374–392. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Choi, H.-D.; Landis, M.S.; Holsen, T.M. An application of passive samplers to understand atmospheric mercury concentration and dry deposition spatial distributions. J. Environ. Monit. 2012, 14, 2976–2982. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M.; Kilner, P.I.; Edgerton, E.; Hartsell, B. Testing and Application of Surrogate Surfaces for Understanding Potential Gaseous Oxidized Mercury Dry Deposition. Environ. Sci. Technol. 2009, 43, 6235–6241. [Google Scholar] [CrossRef] [PubMed]
- Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. Discuss. 2010, 10, 8245–8265. [Google Scholar] [CrossRef] [Green Version]
- Gustin, M.S.; Jaffe, D. Reducing the Uncertainty in Measurement and Understanding of Mercury in the Atmosphere. Environ. Sci. Technol. 2010, 44, 2222–2227. [Google Scholar] [CrossRef]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M.; Marsik, F.J. Estimation of Dry Deposition of Atmospheric Mercury in Nevada by Direct and Indirect Methods. Environ. Sci. Technol. 2007, 41, 1970–1976. [Google Scholar] [CrossRef]
- Zhang, L.; Lyman, S.; Mao, H.; Lin, C.-J.; Gay, D.A.; Wang, S.; Gustin, M.S.; Feng, X.; Wania, F. A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys. Discuss. 2017, 17, 9133–9144. [Google Scholar] [CrossRef] [Green Version]
- Prestbo, E.M.; Gay, D. Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmos. Environ. 2009, 43, 4223–4233. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Cheng, I.; Wright, L.P.; Olson, M.L.; Gay, D.A.; Risch, M.R.; Brooks, S.; Castro, M.S.; Conley, G.D.; et al. The Estimated Six-Year Mercury Dry Deposition Across North America. Environ. Sci. Technol. 2016, 50, 12864–12873. [Google Scholar] [CrossRef]
- Era-Miller, B. Toxics Atmospheric Deposition in Eastern Washington State–Literature Review; EA Project Code 10-124; Washington State Department of Ecology: Olympia, WA, USA, 2011. [Google Scholar]
- Yi, S.-M.; Holsen, T.M.; Noll, K.E. Comparison of Dry Deposition Predicted from Models and Measured with a Water Surface Sampler. Environ. Sci. Technol. 1997, 31, 272–278. [Google Scholar] [CrossRef]
- Sakata, M.; Marumoto, K. Dry Deposition Fluxes and Deposition Velocities of Trace Metals in the Tokyo Metropolitan Area Measured with a Water Surface Sampler. Environ. Sci. Technol. 2004, 38, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.T.; Snihura, A.D.; Liu, Y.; Huang, G. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH. Chemosphere 2002, 49, 341–351. [Google Scholar] [CrossRef]
- United State Environmental Protection Agency (USEPA). Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry; EPA-821-R-02-019; USEPA: Washington, DC, USA, 2002.
- Landis, M.S.; Keeler, G.J. Critical Evaluation of a Modified Automatic Wet-Only Precipitation Collector for Mercury and Trace Element Determinations. Environ. Sci. Technol. 1997, 31, 2610–2615. [Google Scholar] [CrossRef]
- MesoWest Data. Applicable mean daily values accessed for Pullman station KPUW and Puyallup station PLU. Available online: mesowest.utah.edu/ (accessed on 1 March 2013).
- Western Regional Climate Center. Data reported for Pullman measured in nearby Moscow, Idaho and for Puyallup measured at Puyallup 2 West Experimental Station. Available online: www.wrcc.dri.edu/ (accessed on 1 March 2013).
- Sakata, M.; Asakura, K. Evaluating Relative Contribution of Atmospheric Mercury Species to Mercury Dry Deposition in Japan. WaterAirSoil Pollut. 2008, 193, 51–63. [Google Scholar] [CrossRef]
- Sakata, M.; Marumoto, K.; Narukawa, M.; Asakura, K. Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmos. Environ. 2006, 40, 521–531. [Google Scholar] [CrossRef]
- Lai, S.-O.; Huang, J.; Hopke, P.K.; Holsen, T.M. An evaluation of direct measurement techniques for mercury dry deposition. Sci. Total. Environ. 2011, 409, 1320–1327. [Google Scholar] [CrossRef]
- Marsik, F.J.; Keeler, G.J.; Landis, M.S. The dry-deposition of speciated mercury to the Florida Everglades: Measurements and modeling. Atmos. Environ. 2007, 41, 136–149. [Google Scholar] [CrossRef]
- USEPA AirData Air Quality Monitors. Available online: https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=5f239fd3e72f424f98ef3d5def547eb5&extent=-146.2334,13.1913,-46.3896,56.5319 (accessed on 1 December 2020).
- Cobbett, F.; Vanheyst, B. Measurements of GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) from an agricultural field amended with biosolids in Southern Ont., Canada (October 2004–November 2004). Atmos. Environ. 2007, 41, 2270–2282. [Google Scholar] [CrossRef]
- Bash, J.O.; Miller, D.R. A note on elevated total gaseous mercury concentrations downwind from an agriculture field during tilling. Sci. Total. Environ. 2007, 388, 379–388. [Google Scholar] [CrossRef]
- Friedli, H.R.; Radke, L.F.; Prescott, R.; Hobbs, P.V.; Sinha, P. Mercury emissions from the August 2001 wildfires in Washington State and an agricultural waste fire in Oregon and atmospheric mercury budget estimates. Glob. Biogeochem. Cycles 2003, 17, 1039. [Google Scholar] [CrossRef]
- Caldwell, C.A.; Swartzendruber, P.; Prestbo, E. Concentration and Dry Deposition of Mercury Species in Arid South Central New Mexico (2001−2002). Environ. Sci. Technol. 2006, 40, 7535–7540. [Google Scholar] [CrossRef]
- O’Dell, K.; Ford, B.; Fischer, E.V.; Pierce, J.R. Contribution of Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent Trends. Environ. Sci. Technol. 2019, 53, 1797–1804. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’Amore, F.; Angot, H.; Barbante, C.; Brunke, E.-G.; Arcega-Cabrera, F.; Cairns, W.; Comero, S.; et al. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. Discuss. 2017, 17, 2689–2708. [Google Scholar] [CrossRef] [Green Version]
- Gill, G. Task 3—Atmospheric Mercury Deposition Studies. In Transport, Cycling, and Fate of Mercury and Monomethyl Mercury in the San Francisco Delta and Tributaries: An Integrated Mass Balance Assessment Approach; Calfed Mercury Project 2008 Report; Moss Landing Marine Laboratory: Moss Landing, CA, USA, 2008. [Google Scholar]
Date | Duration (Days) | Initial Vol (L) | Final Vol (L) | Evap Rate (L/d) | Initial Total Hg a (ng/L) | Final Total Hg a (ng/L) | Hg Dry Dep b (ng/m2·h) |
---|---|---|---|---|---|---|---|
Pullman, WA | |||||||
15–18 Aug | 2.77 | 4.87 | 3.28 c | 0.57 d | 1.57 | 7.12 | 2.5 |
18–22 Aug | 3.96 | 3.02 | 0.75 | 7.12 | 41.1 | 1.0 | |
23–28 Aug | 5.04 | 4.74 | 1.96 | 0.55 | 1.43 | 28.9 | 4.3 |
29 Aug–5 Sep | 7.11 | 4.74 | 1.02 | 0.52 | 1.26 | 30.8 | 1.6 |
Puyallup, WA | |||||||
12–15 Sep | 3.03 | 4.75 | 4.26 c | 0.16 d | 1.37 | 4.01 | 1.5 |
15–17 Sep | 1.64 | 4.01 | 3.74 | 4.01 | 5.14 | 0.8 | |
21–23 Sep | 2.05 | 4.75 | 4.69 c | 0.03 d | 0.79 | 2.37 | 1.6 |
23–25 Sep | 1.74 | 4.43 | 4.38 | 2.37 | 3.45 | 1.2 | |
27–29 Sep | 2.00 | 4.75 | 4.37 c | 0.19 d | 0.68 | 2.21 | 1.4 |
29 Sep–2 Oct | 2.97 | 4.11 | 3.55 | 2.21 | 4.48 | 1.0 |
Date | Duration (h) | Initial Vol (mL) | Final Vol (mL) | Precip (mm/h) | Initial Total Hg a (ng/L) | Final Total Hg a (ng/L) | Hg Wet Dep c (ng/m2·h) | Precip Hg (ng/L) |
---|---|---|---|---|---|---|---|---|
Pullman, WA | ||||||||
28–29 June | 3.50 | 20 | 38.9 | 0.17 | 0.81 | 36.1 b | 12.8 | 73.4 |
12–13 July | 11.0 | 20 | 48.5 | 0.08 | 0.90 | 33.8 b | 4.8 | 56.9 |
14 July | 2.17 | 20 | 61.2 | 0.61 | 0.88 | 9.84 b | 8.7 | 14.2 |
10–11 Oct | 21.0 | 20 | 210 | 0.29 | 0.27 | 5.74 | 1.8 | 6.32 |
Puyallup, WA | ||||||||
17–19 Sep | 37.9 | 20 | 467 | 0.38 | 0.71 | 2.27 | 0.89 | 2.34 |
25–27 Sep | 55.4 | 20 | 533 | 0.30 | 0.86 | 3.28 | 1.0 | 3.37 |
2–3 Oct | 16.1 | 20 | 209 | 0.38 | 0.62 | 3.18 | 1.3 | 3.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beutel, M.W.; DeSilva, L.; Amegbletor, L. Direct Measurement of Mercury Deposition at Rural and Suburban Sites in Washington State, USA. Atmosphere 2021, 12, 35. https://doi.org/10.3390/atmos12010035
Beutel MW, DeSilva L, Amegbletor L. Direct Measurement of Mercury Deposition at Rural and Suburban Sites in Washington State, USA. Atmosphere. 2021; 12(1):35. https://doi.org/10.3390/atmos12010035
Chicago/Turabian StyleBeutel, Marc W., Lanka DeSilva, and Louis Amegbletor. 2021. "Direct Measurement of Mercury Deposition at Rural and Suburban Sites in Washington State, USA" Atmosphere 12, no. 1: 35. https://doi.org/10.3390/atmos12010035
APA StyleBeutel, M. W., DeSilva, L., & Amegbletor, L. (2021). Direct Measurement of Mercury Deposition at Rural and Suburban Sites in Washington State, USA. Atmosphere, 12(1), 35. https://doi.org/10.3390/atmos12010035