May SARS-CoV-2 Diffusion Be Favored by Alkaline Aerosols and Ammonia Emissions?
Abstract
:1. Introduction
2. Discussion
2.1. Relevant Issues on the Acidity of Atmospheric Aerosol
2.2. Relevant Issues about SARS-CoV-2
2.3. Hypothesis on the Interaction of SARS-CoV-2 with Airborne Particles
- Ammonia emissions are particularly relevant in the Po basin, the area most heavily hit by COVID-19 in Italy. In this area, the practice of using sewage sludge form livestock farming for agricultural purposes is widely adopted. In view of the ammonia capability of promoting the formation of secondary inorganic aerosol [69], the use of sewage sludge from cattle farming has been regulated by the Lombardy Region [70]. To this end, the limits of 170 and 340 kgN ha−1 year−1 (kg of Nitrogen from livestock farming sewage allowed in a year per hectare of agricultural soil) have been fixed, respectively for areas classified as “nitrate-vulnerable” and “not vulnerable”. In particular, in 2019 the limit of 170 and 340 kgN ha−1 year−1 was exceeded in great part of the agricultural areas, respectively in the Bergamo province and in some municipalities in the province of Lodi, both heavily hit by COVID-19. Such provinces include agricultural areas respectively of 70,963 and 55,643 ha [71]. It is, therefore, reasonable to suppose that a fraction of airborne aerosol exhibits an alkaline pH, particularly in the proximity of the agricultural treated areas.
- The hypothesis formulated may represent a possible key to interpret also the important COVID-19 clusters recently signaled in several slaughterhouses, considered as major COVID-19 hotspots [72]. In these occupational settings as well, the possibly favorable alkaline environment for the virus is due to ammonia. Indeed, ammonia concentrations of 18.4 ± 17.5 ppm have been reported in poultry houses [73]. In such environments, the relevant role exerted by ammonia adsorbed on airborne particles, in consideration of their ability to penetrate deep into the respiratory system, has been pointed out by Donham et al. [73]. Not only is ammonia formed through the bacterial action on animal wastings, but it is also used in meat processing as an antimicrobial agent [74]. Ammonia leaks from the refrigeration system may also occur. Moreover, remarkable amounts of oil deriving from ammonia compressors are entrained into the gas circulation. Therefore, the oil must be periodically purged. On carrying out this operation, once oil is purged, ammonia comes out from the purging valves [75].
- Bats have been recognized as the most likely natural reservoir of both SARS-CoV and SARS-CoV-2 [76,77]. High ammonia concentrations build up in bat caves, due to bat waste product decomposition [78]. McFarlane et al. reported ammonia peak concentrations as high as 1779 ppm at a bat cave containing several million insectivorous bats [79]. A similar ammonia concentration has been reported by Studier [80,81], who proposed that the presence of an efficient ammonia filtering system, possibly dependent on the mucous of the respiratory tract and on its production rate and composition, is at the base of the bat high ammonia tolerance.
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singhal, T. A review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsuehe, P.-R. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Aghad, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio-Med. Atenei Parm. 2020, 91, 157–160. [Google Scholar]
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 13 September 2020).
- Al-Tawfiq, J.A. Prevalence and fatality rates of COVID-19: What are the reasons for the wide variations worldwide? Travel. Med. Infect Dis. 2020, 35, 101711. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, K.A.; Olarinmoye, A.O.; Mustapha, J.O.; Kamorudeen, R.T. A close look at the biology of SARS-CoV-2, and the potential influence of weather conditions and seasons on COVID-19 case spread. Infect. Dis. Poverty 2020, 9, 77. [Google Scholar] [CrossRef]
- Coccia, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci. Total Environ. 2020, 729, 138474. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, J.; Gu, Q.; Du, P.; Liang, H.; Dong, Q. Optimal temperature zone for the dispersal of COVID-19. Sci. Total Environ. 2020, 736, 139487. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Abid, I.; Hussain, S.; Shahzad, N.; Waqas, M.S.; Iqbal, M.J. The effects of regional climatic condition on the spread of COVID-19 at global scale. Sci. Total Environ. 2020, 739, 140101. [Google Scholar] [CrossRef]
- Scafetta, N. Distribution of the SARS-CoV-2 pandemic and its monthly forecast based on seasonal climate patterns. Int. J. Environ. Res. Public Health 2020, 17, 3493. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Prado, E.; Simbaña-Rivera, K.; Gómez-Barreno, L.; Rubio-Neira, M.; Guaman, L.P.; Kyriakidis, N.C.; Muslin, C.; Gómez Jaramillo, A.M.; Barba-Ostria, C.; Cevallos-Robalino, D.; et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn. Microbiol. Infect. Dis. 2020, 98, 115094. [Google Scholar] [CrossRef]
- Goujon, A.; Natale, F.; Ghio, D.; Conte, A.; Dijkstra, L. Age, Gender, and Territory of COVID-19 Infections and Fatalities; EUR 30237 EN; Publications Office of the European Union: Ispra, Italy, 2020. [Google Scholar]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Frontera, A.; Martin, C.; Vlachos, K.; Sgubind, G. Regional air pollution persistence links to COVID-19 infection zoning. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; et al. The potential role of Particulate Matter in the spreading of COVID-19 in Northern Italy: First evidence-based research hypotheses. BMJ Open 2020. [Google Scholar] [CrossRef]
- D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 2020, 12, 1359. [Google Scholar] [CrossRef]
- Ilie, P.T.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef]
- Donaldson, K.; Tran, L.; Jimenez, L.A.; Duffin, R.; Newby, D.E.; Mills, N.; MacNee, W.; Stone, V. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2005, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.A. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual. Atmos. Health 2011, 4, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020, 8, E46–E47. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Ogen, Y. Assessing Nitrogen Dioxide (NO2) levels as a contributing factor to Coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef] [PubMed]
- Houspie, L.; De Coster, S.; Keyaerts, E.; Narongsack, P.; De Roy, R.; Talboom, I.; Sisk, M.; Maes, P.; Verbeeck, J.; Van Ranst, M. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses. Virol. J. 2011, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Qi, X.; Chen, H.; Li, X.; Zhang, Z.; Wang, H.; Sun, L.; Zhang, L.; Guo, J.; Morawska, L.; et al. Exhaled breath is a significant source of SARS-CoV-2 emission. medRxiv 2020. [Google Scholar] [CrossRef]
- Kulkarni, H.; Smith, C.M.; Lee, D.D.H.; Hirst, R.A.; Easton, A.J.; O’Callaghan, C. Evidence of respiratory syncytial virus spread by aerosol time to revisit infection control strategies? Am. J. Respir. Crit. Care Med. 2016, 194, 308–316. [Google Scholar] [CrossRef]
- Buonanno, G.; Stabile, L.; Morawska, L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ. Int. 2020, 141, 105794. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimized? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Tan, Y.T.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, 323, 1610–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somsen, G.A.; van Rijn, C.; Kooij, S.; Bem, R.A.; Bonn, D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir. Med. 2020, 8, 658–659. [Google Scholar] [CrossRef]
- Li, Y.; Qian, H.; Hang, J.; Chen, X.; Hong, L.; Liang, P.; Li, J.; Xiao, S.; Wei, J.; Liu, L.; et al. Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Milton, D.K. It is time to address airborne transmission of COVID-19. Clin. Infect. Dis. 2020, 6, ciaa939. [Google Scholar] [CrossRef]
- World Health Organization. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. Available online: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on 9 September 2020).
- Ding, J.; Zhao, P.; Su, J.; Dong, Q.; Du, X.; Zhang, Y. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 2019, 19, 7939–7954. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Wang, W.; Wang, Q.; Yang, X.Y.; Tang, D. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China. Atmos. Environ. 2011, 45, 7503–7519. [Google Scholar] [CrossRef]
- Cao, J.; Tie, X.; Dabberdt, W.F.; Jie, T.; Zhao, Z.; An, Z.; Shen, Z.; Feng, Y. On the potential high acid deposition in northeastern China. J. Geophys. Res. Atmos. 2013, 118, 4834–4846. [Google Scholar] [CrossRef]
- Matta, E.; Facchini, M.C.; Decesari, S.; Mircea, M.; Cavalli, F.; Fuzzi, S.; Putaud, J.-P.; Dell’Acqua, A. Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy. Atmos. Chem. Phys. 2003, 3, 623–637. [Google Scholar] [CrossRef] [Green Version]
- Masiol, M.; Squizzato, S.; Formenton, G.; Badiuzzaman, K.M.; Hopke, P.K.; Nenes, A.; Pandis, S.N.; Tositti, L.; Benetello, F.; Visin, F.; et al. Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley. Sci. Total Environ. 2020, 704, 135287. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil. Trans. R. Soc. B 2013, 368, 20130166. [Google Scholar] [CrossRef]
- European Space Agency. Satellite Sensor Maps Global Atmospheric Ammonia Emissions. Available online: https://www.esa.int/Applications/Observing_the_Earth/Satellite_sensor_maps_global_atmospheric_ammonia_emissions (accessed on 27 August 2020).
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Clarisse, L.; Clerbaux, C.; Dentener, F.; Hurtmans, D.; Coheur, P.-F. Global ammonia distribution derived from infrared satellite observations. Nat. Geosci. 2009, 2, 479–483. [Google Scholar] [CrossRef]
- Vecchi, R.; Marcazzan, G.; Valli, G.; Ceriani, M.; Antoniazzi, C. The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 2004, 38, 4437–4446. [Google Scholar] [CrossRef]
- Canepari, S.; Astolfi, M.L.; Catrambone, M.; Frasca, D.; Marcoccia, M.; Marcovecchio, F.; Massimi, L.; Rantica, E.; Perrino, C. A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles. Environ. Pollut. 2019, 253, 19–28. [Google Scholar] [CrossRef]
- Zilio, M.; Orzi, V.; Chiodini, M.E.; Riva, C.; Acutis, M.; Boccasile, G.; Adani, F. Evaluation of ammonia and odour emissions from animal slurry and digestate storage in the Po Valley (Italy). Waste Manage. 2020, 103, 296–304. [Google Scholar] [CrossRef]
- Torvela, T.; Tissari, J.; Sippula, O.; Kaivosoja, T.; Leskinen, J.; Virén, A.; Lähde, A.; Jokiniemi, J. Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos. Environ. 2014, 87, 65–76. [Google Scholar] [CrossRef]
- Larsen, L.; Roth, B.; Van Dingenen, R.; Raes, F. Photolytic aerosol formation in SO2–HNO2–H2O–air mixtures, with and without NH3. J. Aerosol Sci. 1997, 28, S719–S720. [Google Scholar] [CrossRef]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving air quality in the Po valley, Italy: Some results by the LIFE-IP-PREPAIR project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Sakagami, H.; Miwa, N. ACE2: The key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: Demon or angel? Viruses 2020, 12, 491. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARSCoV-2 spike glycoprotein. Cell 2020, 180, 281–292. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 2020, 78, 779–784. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. Iscience 2020, 23, 101212. [Google Scholar] [CrossRef]
- Earp, L.J.; Delos, S.E.; Park, H.E.; White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 2005, 285, 25–66. [Google Scholar] [PubMed]
- Chu, V.C.; McElroy, L.J.; Chu, V.; Bauman, B.E.; Whittaker, G.R. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J. Virol. 2006, 80, 3180–3188. [Google Scholar] [CrossRef] [Green Version]
- Skehel, J.J.; Wiley, D.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Ann. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Payne, H.R.; Storz, J. Analysis of cell fusion induced by bovine coronavirus infection. Arch. Virol. 1988, 103, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Sturman, L.S.; Ricard, C.S.; Holmes, K.V. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 °C correlates with virus aggregation and virus-induced cell fusion. J. Virol. 1990, 64, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Weismiller, D.G.; Sturman, L.S.; Buchmeier, M.J.; Fleming, J.O.; Holmes, K.V. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions. J. Virol. 1990, 64, 3051–3055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelus, B.D.; Schickli, J.H.; Blau, D.M.; Weiss, S.R.; Holmes, K.V. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J. Virol. 2003, 77, 830–840. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Bidon, M.; Jaimes, J.A.; Whittaker, G.R.; Daniel, S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral. Res. 2020, 178, 104792. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Xu, J.; Chen, J.; Zhao, N.; Wang, G.; Yu, G.; Li, H.; Huo, J.; Lin, Y.; Fu, Q.; Guo, H.; et al. Importance of ammonia gas-particle conversion ratio in haze formation in the rural agricultural environment. Atmos. Chem. Phys. 2020, 20, 7259–7269. [Google Scholar] [CrossRef]
- Lombardy Region Official Bulletin. Ordinary Series N. 51, 19 December 2019; pp. 58–94. Available online: https://www.regione.lombardia.it/wps/wcm/connect/b781388b-db53-4d2c-85ff-5cc8b2d5ddd1/Burl+n.+51+del+19-12-2019+-+Decreto+n.+18407.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-b781388b-db53-4d2c-85ff-5cc8b2d5ddd1-mYuumQO (accessed on 30 August 2020).
- Dataset. Available online: https://www.asr-lombardia.it/asrlomb/it/100565aziende-superficie-agricola-utilizzata-sau-e-superficie-totale-sat-ai-censimenti-italia (accessed on 28 August 2020).
- Garcés, L. COVID-19 exposes animal agriculture’s vulnerability. Agr. Hum. Values 2020, 37, 621–622. [Google Scholar] [CrossRef]
- Donham, K.J.; Cumro, D.; Reynolds, S. Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J. Agromed. 2002, 8, 57–76. [Google Scholar] [CrossRef]
- Acevedo-Correa, D.; Rodríguez-Meza, J.E.; Martelo, R.J. Effect of ammonium hydroxide on quality of meat products. Contemp. Eng. Sci. 2018, 11, 1513–1532. [Google Scholar] [CrossRef] [Green Version]
- ISPESL. Progetto. I Profili di Rischio Nella Macellazione: Identificazione e Misura Degli Effetti. Available online: https://docplayer.it/3235598-Ispesl-progetto-i-profili-di-rischio-nella-macellazione-identificazione-e-misura-degli-effetti.html (accessed on 11 September 2020).
- Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005, 310, 676–679. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, H.A. Investigations of the cave atmosphere of a Mexican bat colony. J. Mamm. 1965, 45, 568–577. [Google Scholar] [CrossRef]
- McFarlane, D.A.; Keeler, R.C.; Mizutani, H. Ammonia volatilization in a Mexican bat cave ecosystem. Biogeochemistry 1995, 30, 1–8. [Google Scholar] [CrossRef]
- Studier, E.H. Studies on the mechanisms of ammonia tolerance of the guano bat. J. Exp. Zool. 1966, 163, 79–85. [Google Scholar] [CrossRef]
- Studier, E.H. Respiratory ammonia filtration, mucous composition and ammonia tolerance in bats. J. Exp. Zool. 1969, 170, 253–258. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manigrasso, M.; Protano, C.; Guerriero, E.; Vitali, M.; Avino, P. May SARS-CoV-2 Diffusion Be Favored by Alkaline Aerosols and Ammonia Emissions? Atmosphere 2020, 11, 995. https://doi.org/10.3390/atmos11090995
Manigrasso M, Protano C, Guerriero E, Vitali M, Avino P. May SARS-CoV-2 Diffusion Be Favored by Alkaline Aerosols and Ammonia Emissions? Atmosphere. 2020; 11(9):995. https://doi.org/10.3390/atmos11090995
Chicago/Turabian StyleManigrasso, Maurizio, Carmela Protano, Ettore Guerriero, Matteo Vitali, and Pasquale Avino. 2020. "May SARS-CoV-2 Diffusion Be Favored by Alkaline Aerosols and Ammonia Emissions?" Atmosphere 11, no. 9: 995. https://doi.org/10.3390/atmos11090995
APA StyleManigrasso, M., Protano, C., Guerriero, E., Vitali, M., & Avino, P. (2020). May SARS-CoV-2 Diffusion Be Favored by Alkaline Aerosols and Ammonia Emissions? Atmosphere, 11(9), 995. https://doi.org/10.3390/atmos11090995