Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum
Abstract
1. Introduction
2. Model Experiments
3. The QBO in the LGM
4. The SSWs in the LGM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rind, D.; Chandler, M.; Lonergan, P.; Lerner, J. Climate change and the middle atmosphere 5. Paleostratosphere in cold and warm climates. J. Geophys. Res-Atmos. 2001, 106, 20195–20212. [Google Scholar] [CrossRef]
- Rind, D.; Lerner, J.; McLinden, C.; Perlwitz, J. Stratospheric ozone during the Last Glacial Maximum. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Xia, Y.; Liu, Z.Y.; Wang, Y.C.; Lu, Z.Y.; Wang, T. Distorted Pacific-North American teleconnection at the Last Glacial Maximum. Clim. Past. 2020, 16, 199–209. [Google Scholar] [CrossRef]
- Murray, L.T.; Mickley, L.J.; Kaplan, J.O.; Sofen, E.D.; Pfeiffer, M.; Alexander, B. Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmos. Chem. Phys. 2014, 14, 3589–3622. [Google Scholar] [CrossRef]
- Fu, Q.; White, R.H.; Wang, M.; Alexander, B.; Solomon, S.; Gettelman, A.; DBattisti, D.S.; Lin, P. The Brewer-Dobson Circulation during the Last Glacial Maximum. Geophys. Res. Lett. 2020, 47, e2019GL086271. [Google Scholar] [CrossRef]
- Noda, S.; Kodera, K.; Adachi, Y.; Deushi, M.; Kitoh, A.; Mizuta, R.; Murakami, S.; Yoshida, K.; Yoden, S. Mitigation of global cooling by stratospheric chemistry feedbacks in a simulation of the Last Glacial Maximum. J. Geophys. Res. Atmos. 2018, 123, 9378–9390. [Google Scholar] [CrossRef]
- Bunzel, F.; Schmidt, H. The Brewer-Dobson Circulation in a Changing Climate: Impact of the Model Configuration. J. Atmos. Sci. 2013, 70, 1437–1455. [Google Scholar] [CrossRef]
- Butchart, N.; Scaife, A.; Bourqui, M.; De Grandpré, J.; Hare, S.; Kettleborough, J.; Langematz, U.; Manzini, E.; Sassi, F.; Shibata, K. Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Clim. Dynam. 2006, 27, 727–741. [Google Scholar] [CrossRef]
- Garcia, R.R.; Randel, W.J. Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci. 2008, 65, 2731–2739. [Google Scholar] [CrossRef]
- Li, F.; Austin, J.; Wilson, J. The strength of the Brewer-Dobson circulation in a changing climate: Coupled chemistry-climate model simulations. J. Clim. 2008, 21, 40–57. [Google Scholar] [CrossRef]
- Lin, P.; Fu, Q. Changes in various branches of the Brewer-Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res-Atmos. 2013, 118, 73–84. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, T.G. Simulated Anthropogenic Changes in the Brewer-Dobson Circulation, Including Its Extension to High Latitudes. J. Clim. 2009, 22, 1516–1540. [Google Scholar] [CrossRef]
- Oberlander, S.; Langematz, U.; Meul, S. Unraveling impact factors for future changes in the Brewer-Dobson circulation. J. Geophys. Res-Atmos. 2013, 118, 10296–10312. [Google Scholar] [CrossRef]
- Okamoto, K.; Sato, K.; Akiyoshi, H. A study on the formation and trend of the Brewer-Dobson circulation. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Fu, Q.; Lin, P.; Solomon, S.; Hartmann, D.L. Observational evidence of strengthening of the Brewer-Dobson circulation since 1980. J. Geophys. Res-Atmos. 2015, 120, 10214–10228. [Google Scholar] [CrossRef]
- Fu, Q.; Solomon, S.; Pahlavan, H.A.; Lin, P. Observed changes in Brewer–Dobson circulation for 1980–2018. Environ. Res. Lett. 2019, 14, 114026. [Google Scholar] [CrossRef]
- Wang, M.C.; Fu, Q.; Solomon, S.; White, R.H.; Alexander, B. Stratospheric Ozone in the Last Glacial Maximum. J. Geophys. Res. Atmos. 2020. accepted subject to minor revision. [Google Scholar]
- Gettelman, A.; Mills, M.J.; Kinnison, D.E.; Garcia, R.R.; Smith, A.K.; Marsh, D.R.; Tilmes, S.; Vitt, F.; Bardeen, C.G.; McInerny, J.; et al. The Whole Atmosphere Community Climate Model Version 6 (WACCM6). J. Geophys. Res. Atmos. 2019. [Google Scholar] [CrossRef]
- Richter, J.H.; Butchart, N.; Kawatani, Y.; Bushell, A.C.; Holt, L.; Serva, F.; Anstey, J.; Simpson, I.R.; Osprey, S.; Hamilton, K.; et al. Response of the Quasi-Biennial Oscillation to a warming climate in global climate models. Q. J. Roy. Meteor. Soc. 2020. [Google Scholar] [CrossRef]
- Ayarzaguena, B.; Charlton-Perez, A.J.; Butler, A.H.; Hitchcock, P.; Simpson, I.R.; Polvani, L.M.; Butchart, N.; Gerber, E.P.; Gray, L.; Hassler, B.; et al. Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere-Troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6 Models. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Doege, M.C. Sensitivity of the quasi-biennial oscillation to CO2 doubling. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Kawatani, Y.; Hamilton, K.; Watanabe, S. The Quasi-Biennial Oscillation in a Double CO2 Climate. J. Atmos. Sci. 2011, 68, 265–283. [Google Scholar] [CrossRef]
- Watanabe, S.; Kawatani, Y. Sensitivity of the QBO to Mean Tropical Upwelling under a Changing Climate Simulated with an Earth System Model. J. Meteorol. Soc. Jpn. 2012, 90A, 351–360. [Google Scholar] [CrossRef]
- Kawatani, Y.; Hamilton, K. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 2013, 497, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Butchart, N.; Anstey, J.A.; Kawatani, Y.; Osprey, S.M.; Richter, J.H.; Wu, T. QBO changes in CMIP6 climate projections. Geophys. Res. Lett. 2020, 47, e2019GL086903. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth. Syst. Sci. Data. 2017, 9, 63–76. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- van Loon, H.; Jenne, R.L.; Labitzke, K. Zonal harmonic standing waves. J. Geophys. Res. 1973, 78, 4463–4471. [Google Scholar] [CrossRef]
- Yoden, S. An illustrative model of seasonal and interannual variations of the stratospheric circulation. J. Atmos. Sci. 1990, 47, 1845–1853. [Google Scholar] [CrossRef]
- Taguchi, M.; Yoden, S. Internal interannual variability of the troposphere-stratosphere coupled system in a simple global circulation model. Part I: Parameter sweep experiment. J. Atmos. Sci. 2002, 59, 3021–3036. [Google Scholar] [CrossRef]
- White, R.H.; Battisti, D.S.; Sheshadri, A. Orography and the Boreal Winter Stratosphere: The Importance of the Mongolian Mountains. Geophys. Res. Lett. 2018, 45, 2088–2096. [Google Scholar] [CrossRef]
- Rind, D.; Shindell, D.; Lonergan, P.; Balachandran, N.K. Climate change and the middle atmosphere. Part III: The doubled CO2 climate revisited. J. Clim. 1998, 11, 876–894. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Polvani, L.M.; Austin, J.; Li, F. The frequency and dynamics of stratospheric sudden warmings in the 21st century. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, T.G. Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. J. Clim. 2009, 22, 5449–5463. [Google Scholar] [CrossRef]
- Bell, C.J.; Gray, L.J.; Kettleborough, J. Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Q. J. Roy. Meteor. Soc. 2010, 136, 1181–1190. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Manzini, E. Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Scaife, A.A.; Spangehl, T.; Fereday, D.R.; Cubasch, U.; Langematz, U.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M.P.; et al. Climate change projections and stratosphere-troposphere interaction. Clim. Dynam. 2012, 38, 2089–2097. [Google Scholar] [CrossRef]
- Garcia, R.R.; Richter, J.H. On the Momentum Budget of the Quasi-Biennial Oscillation in the Whole Atmosphere Community Climate Model. J. Atmos. Sci. 2019, 76, 69–87. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Braconnot, P.; Harrison, S.P.; Kageyama, M.; Bartlein, P.J.; Masson-Delmotte, V.; Abe-Ouchi, A.; Otto-Bliesner, B.; Zhao, Y. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Chang. 2012, 2, 417–424. [Google Scholar] [CrossRef]
- Kucera, M.; Rosell-Mele, A.; Schneider, R.; Waelbroeck, C.; Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 2005, 24, 813–819. [Google Scholar] [CrossRef]
- Brady, E.C.; Otto-Bliesner, B.L.; Kay, J.E.; Rosenbloom, N. Sensitivity to Glacial Forcing in the CCSM4. J. Clim. 2013, 26, 1901–1925. [Google Scholar] [CrossRef]
- Abe-Ouchi, A.; Saito, F.; Kageyama, M.; Braconnot, P.; Harrison, S.P.; Lambeck, K.; Otto-Bliesner, B.L.; Peltier, W.R.; Tarasov, L.; Peterschmitt, J.Y.; et al. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model. Dev. 2015, 8, 3621–3637. [Google Scholar] [CrossRef]
- Bushell, A.; Anstey, J.; Butchart, N.; Kawatani, Y.; Osprey, S.; Richter, J.; Serva, F.; Braesicke, P.; Cagnazzo, C.; Chen, C.C. Evaluation of the Quasi-Biennial Oscillation in global climate models for the SPARC QBO-initiative. Q. J. Roy. Meteor. Soc. 2020. [Google Scholar] [CrossRef]
- Pahlavan, H.A.; Fu, Q.; Wallace, J.M.; Kiladis, G.N. Revisiting the Quasi Biennial Oscillation as Seen in ERA5. Part I: Description and Momentum Budget. arXiv 2020, arXiv:2008.10146. [Google Scholar]
- Pahlavan, H.A.; Wallace, J.M.; Fu, Q.; Kiladis, G.N. Revisiting the Quasi Biennial Oscillation as Seen in ERA5. Part II: Evaluation of Waves and Wave Forcing. arXiv 2020, arXiv:2008.10144. [Google Scholar]
- Geller, M.A.; Zhou, T.H.; Shindell, D.; Ruedy, R.; Aleinov, I.; Nazarenko, L.; Tausnev, N.L.; Kelley, M.; Sun, S.; Cheng, Y.; et al. Modeling the QBO-Improvements resulting from higher-model vertical resolution. J. Adv. Model. Earth Sy. 2016, 8, 1092–1105. [Google Scholar] [CrossRef]
- Dunkerton, T.J.; Delisi, D.P. Climatology of the equatorial lower stratosphere. J. Atmos. Sci. 1985, 42, 376–396. [Google Scholar] [CrossRef]
- Cao, C.; Chen, Y.H.; Rao, J.; Liu, S.M.; Li, S.Y.; Ma, M.H.; Wang, Y.B. Statistical Characteristics of Major Sudden Stratospheric Warming Events in CESM1-WACCM: A Comparison with the JRA55 and NCEP/NCAR Reanalyses. Atmos. -Basel 2019, 10, 519. [Google Scholar] [CrossRef]
- Butchart, N.; Austin, J.; Knight, J.R.; Scaife, A.A.; Gallani, M.L. The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J. Clim. 2000, 13, 2142–2159. [Google Scholar] [CrossRef]
- Polvani, L.M.; Abalos, M.; Garcia, R.; Kinnison, D.; Randel, W.J. Significant Weakening of Brewer-Dobson Circulation Trends Over the 21st Century as a Consequence of the Montreal Protocol. Geophys. Res. Lett. 2018, 45, 401–409. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M.; Perlwitz, J.; Sassi, F.; Manzini, E.; Shibata, K.; Pawson, S.; Nielsen, J.E.; Rind, D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Clim. 2007, 20, 470–488. [Google Scholar] [CrossRef]
MC | PI | LGMPROXY | LGMPMIP3 | |
---|---|---|---|---|
SATG | 15 | 14.4 | 10.6 | 10.1 |
SSTG | 18.4 | 18 | 16.6 | 16.2 |
SST10S-10N | 27.2 | 27.3 | 26 | 25.1 |
PTT at 10 hPa | 26.8 ± 3.4 | 27.1 ± 2.2 | 32.9 ± 3.0 | 40.5 ± 3.7 |
ATT at 10 hPa | 17.3 ± 0.9 | 17.4 ± 1.3 | 16.1 ± 1.7 | 16.9 ± 1.5 |
ADD at 10 hPa | 17.9 | 18.2 | 16.5 | 17.6 |
PTT at 30 hPa | 26.8 ± 2.8 | 27 ± 2 | 33 ± 2.7 | 40.6 ± 3.2 |
ATT at 30 hPa | 12.1 ± 1.1 | 13.2 ± 0.9 | 11.5 ± 0.6 | 12.6 ± 1.2 |
ADD at 30 hPa | 12.3 | 13.2 | 11.7 | 13.2 |
MCno_ODS | MC | PI | LGMPROXY | LGMPMIP3 | |
---|---|---|---|---|---|
SSW frequency | 0.66 | 0.48 | 0.38 | 0.4 | 0.42 |
First SSW time | Nov 11 | Nov 21 | Dec 12 | Jan 3 | Jan 26 |
Final warming day | 115 ± 16 | 119 ± 16 | 117 ± 18 | 116 ± 16 | 118 ± 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Wang, M.; White, R.H.; Pahlavan, H.A.; Alexander, B.; Wallace, J.M. Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere 2020, 11, 943. https://doi.org/10.3390/atmos11090943
Fu Q, Wang M, White RH, Pahlavan HA, Alexander B, Wallace JM. Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere. 2020; 11(9):943. https://doi.org/10.3390/atmos11090943
Chicago/Turabian StyleFu, Qiang, Mingcheng Wang, Rachel H. White, Hamid A. Pahlavan, Becky Alexander, and John M. Wallace. 2020. "Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum" Atmosphere 11, no. 9: 943. https://doi.org/10.3390/atmos11090943
APA StyleFu, Q., Wang, M., White, R. H., Pahlavan, H. A., Alexander, B., & Wallace, J. M. (2020). Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere, 11(9), 943. https://doi.org/10.3390/atmos11090943