Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum
Abstract
:1. Introduction
2. Model Experiments
3. The QBO in the LGM
4. The SSWs in the LGM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rind, D.; Chandler, M.; Lonergan, P.; Lerner, J. Climate change and the middle atmosphere 5. Paleostratosphere in cold and warm climates. J. Geophys. Res-Atmos. 2001, 106, 20195–20212. [Google Scholar] [CrossRef]
- Rind, D.; Lerner, J.; McLinden, C.; Perlwitz, J. Stratospheric ozone during the Last Glacial Maximum. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Y.; Xia, Y.; Liu, Z.Y.; Wang, Y.C.; Lu, Z.Y.; Wang, T. Distorted Pacific-North American teleconnection at the Last Glacial Maximum. Clim. Past. 2020, 16, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Murray, L.T.; Mickley, L.J.; Kaplan, J.O.; Sofen, E.D.; Pfeiffer, M.; Alexander, B. Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmos. Chem. Phys. 2014, 14, 3589–3622. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; White, R.H.; Wang, M.; Alexander, B.; Solomon, S.; Gettelman, A.; DBattisti, D.S.; Lin, P. The Brewer-Dobson Circulation during the Last Glacial Maximum. Geophys. Res. Lett. 2020, 47, e2019GL086271. [Google Scholar] [CrossRef] [Green Version]
- Noda, S.; Kodera, K.; Adachi, Y.; Deushi, M.; Kitoh, A.; Mizuta, R.; Murakami, S.; Yoshida, K.; Yoden, S. Mitigation of global cooling by stratospheric chemistry feedbacks in a simulation of the Last Glacial Maximum. J. Geophys. Res. Atmos. 2018, 123, 9378–9390. [Google Scholar] [CrossRef]
- Bunzel, F.; Schmidt, H. The Brewer-Dobson Circulation in a Changing Climate: Impact of the Model Configuration. J. Atmos. Sci. 2013, 70, 1437–1455. [Google Scholar] [CrossRef] [Green Version]
- Butchart, N.; Scaife, A.; Bourqui, M.; De Grandpré, J.; Hare, S.; Kettleborough, J.; Langematz, U.; Manzini, E.; Sassi, F.; Shibata, K. Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Clim. Dynam. 2006, 27, 727–741. [Google Scholar] [CrossRef]
- Garcia, R.R.; Randel, W.J. Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci. 2008, 65, 2731–2739. [Google Scholar] [CrossRef]
- Li, F.; Austin, J.; Wilson, J. The strength of the Brewer-Dobson circulation in a changing climate: Coupled chemistry-climate model simulations. J. Clim. 2008, 21, 40–57. [Google Scholar] [CrossRef]
- Lin, P.; Fu, Q. Changes in various branches of the Brewer-Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res-Atmos. 2013, 118, 73–84. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, T.G. Simulated Anthropogenic Changes in the Brewer-Dobson Circulation, Including Its Extension to High Latitudes. J. Clim. 2009, 22, 1516–1540. [Google Scholar] [CrossRef]
- Oberlander, S.; Langematz, U.; Meul, S. Unraveling impact factors for future changes in the Brewer-Dobson circulation. J. Geophys. Res-Atmos. 2013, 118, 10296–10312. [Google Scholar] [CrossRef]
- Okamoto, K.; Sato, K.; Akiyoshi, H. A study on the formation and trend of the Brewer-Dobson circulation. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Lin, P.; Solomon, S.; Hartmann, D.L. Observational evidence of strengthening of the Brewer-Dobson circulation since 1980. J. Geophys. Res-Atmos. 2015, 120, 10214–10228. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Solomon, S.; Pahlavan, H.A.; Lin, P. Observed changes in Brewer–Dobson circulation for 1980–2018. Environ. Res. Lett. 2019, 14, 114026. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; Fu, Q.; Solomon, S.; White, R.H.; Alexander, B. Stratospheric Ozone in the Last Glacial Maximum. J. Geophys. Res. Atmos. 2020. accepted subject to minor revision. [Google Scholar]
- Gettelman, A.; Mills, M.J.; Kinnison, D.E.; Garcia, R.R.; Smith, A.K.; Marsh, D.R.; Tilmes, S.; Vitt, F.; Bardeen, C.G.; McInerny, J.; et al. The Whole Atmosphere Community Climate Model Version 6 (WACCM6). J. Geophys. Res. Atmos. 2019. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.H.; Butchart, N.; Kawatani, Y.; Bushell, A.C.; Holt, L.; Serva, F.; Anstey, J.; Simpson, I.R.; Osprey, S.; Hamilton, K.; et al. Response of the Quasi-Biennial Oscillation to a warming climate in global climate models. Q. J. Roy. Meteor. Soc. 2020. [Google Scholar] [CrossRef]
- Ayarzaguena, B.; Charlton-Perez, A.J.; Butler, A.H.; Hitchcock, P.; Simpson, I.R.; Polvani, L.M.; Butchart, N.; Gerber, E.P.; Gray, L.; Hassler, B.; et al. Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere-Troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6 Models. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Doege, M.C. Sensitivity of the quasi-biennial oscillation to CO2 doubling. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Kawatani, Y.; Hamilton, K.; Watanabe, S. The Quasi-Biennial Oscillation in a Double CO2 Climate. J. Atmos. Sci. 2011, 68, 265–283. [Google Scholar] [CrossRef]
- Watanabe, S.; Kawatani, Y. Sensitivity of the QBO to Mean Tropical Upwelling under a Changing Climate Simulated with an Earth System Model. J. Meteorol. Soc. Jpn. 2012, 90A, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Kawatani, Y.; Hamilton, K. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 2013, 497, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Butchart, N.; Anstey, J.A.; Kawatani, Y.; Osprey, S.M.; Richter, J.H.; Wu, T. QBO changes in CMIP6 climate projections. Geophys. Res. Lett. 2020, 47, e2019GL086903. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth. Syst. Sci. Data. 2017, 9, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- van Loon, H.; Jenne, R.L.; Labitzke, K. Zonal harmonic standing waves. J. Geophys. Res. 1973, 78, 4463–4471. [Google Scholar] [CrossRef]
- Yoden, S. An illustrative model of seasonal and interannual variations of the stratospheric circulation. J. Atmos. Sci. 1990, 47, 1845–1853. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, M.; Yoden, S. Internal interannual variability of the troposphere-stratosphere coupled system in a simple global circulation model. Part I: Parameter sweep experiment. J. Atmos. Sci. 2002, 59, 3021–3036. [Google Scholar] [CrossRef]
- White, R.H.; Battisti, D.S.; Sheshadri, A. Orography and the Boreal Winter Stratosphere: The Importance of the Mongolian Mountains. Geophys. Res. Lett. 2018, 45, 2088–2096. [Google Scholar] [CrossRef]
- Rind, D.; Shindell, D.; Lonergan, P.; Balachandran, N.K. Climate change and the middle atmosphere. Part III: The doubled CO2 climate revisited. J. Clim. 1998, 11, 876–894. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Polvani, L.M.; Austin, J.; Li, F. The frequency and dynamics of stratospheric sudden warmings in the 21st century. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, T.G. Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. J. Clim. 2009, 22, 5449–5463. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.J.; Gray, L.J.; Kettleborough, J. Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Q. J. Roy. Meteor. Soc. 2010, 136, 1181–1190. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Manzini, E. Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Scaife, A.A.; Spangehl, T.; Fereday, D.R.; Cubasch, U.; Langematz, U.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M.P.; et al. Climate change projections and stratosphere-troposphere interaction. Clim. Dynam. 2012, 38, 2089–2097. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.R.; Richter, J.H. On the Momentum Budget of the Quasi-Biennial Oscillation in the Whole Atmosphere Community Climate Model. J. Atmos. Sci. 2019, 76, 69–87. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Braconnot, P.; Harrison, S.P.; Kageyama, M.; Bartlein, P.J.; Masson-Delmotte, V.; Abe-Ouchi, A.; Otto-Bliesner, B.; Zhao, Y. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Chang. 2012, 2, 417–424. [Google Scholar] [CrossRef]
- Kucera, M.; Rosell-Mele, A.; Schneider, R.; Waelbroeck, C.; Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 2005, 24, 813–819. [Google Scholar] [CrossRef]
- Brady, E.C.; Otto-Bliesner, B.L.; Kay, J.E.; Rosenbloom, N. Sensitivity to Glacial Forcing in the CCSM4. J. Clim. 2013, 26, 1901–1925. [Google Scholar] [CrossRef]
- Abe-Ouchi, A.; Saito, F.; Kageyama, M.; Braconnot, P.; Harrison, S.P.; Lambeck, K.; Otto-Bliesner, B.L.; Peltier, W.R.; Tarasov, L.; Peterschmitt, J.Y.; et al. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model. Dev. 2015, 8, 3621–3637. [Google Scholar] [CrossRef] [Green Version]
- Bushell, A.; Anstey, J.; Butchart, N.; Kawatani, Y.; Osprey, S.; Richter, J.; Serva, F.; Braesicke, P.; Cagnazzo, C.; Chen, C.C. Evaluation of the Quasi-Biennial Oscillation in global climate models for the SPARC QBO-initiative. Q. J. Roy. Meteor. Soc. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pahlavan, H.A.; Fu, Q.; Wallace, J.M.; Kiladis, G.N. Revisiting the Quasi Biennial Oscillation as Seen in ERA5. Part I: Description and Momentum Budget. arXiv 2020, arXiv:2008.10146. [Google Scholar]
- Pahlavan, H.A.; Wallace, J.M.; Fu, Q.; Kiladis, G.N. Revisiting the Quasi Biennial Oscillation as Seen in ERA5. Part II: Evaluation of Waves and Wave Forcing. arXiv 2020, arXiv:2008.10144. [Google Scholar]
- Geller, M.A.; Zhou, T.H.; Shindell, D.; Ruedy, R.; Aleinov, I.; Nazarenko, L.; Tausnev, N.L.; Kelley, M.; Sun, S.; Cheng, Y.; et al. Modeling the QBO-Improvements resulting from higher-model vertical resolution. J. Adv. Model. Earth Sy. 2016, 8, 1092–1105. [Google Scholar] [CrossRef]
- Dunkerton, T.J.; Delisi, D.P. Climatology of the equatorial lower stratosphere. J. Atmos. Sci. 1985, 42, 376–396. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Chen, Y.H.; Rao, J.; Liu, S.M.; Li, S.Y.; Ma, M.H.; Wang, Y.B. Statistical Characteristics of Major Sudden Stratospheric Warming Events in CESM1-WACCM: A Comparison with the JRA55 and NCEP/NCAR Reanalyses. Atmos. -Basel 2019, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Butchart, N.; Austin, J.; Knight, J.R.; Scaife, A.A.; Gallani, M.L. The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J. Clim. 2000, 13, 2142–2159. [Google Scholar] [CrossRef]
- Polvani, L.M.; Abalos, M.; Garcia, R.; Kinnison, D.; Randel, W.J. Significant Weakening of Brewer-Dobson Circulation Trends Over the 21st Century as a Consequence of the Montreal Protocol. Geophys. Res. Lett. 2018, 45, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Charlton, A.J.; Polvani, L.M.; Perlwitz, J.; Sassi, F.; Manzini, E.; Shibata, K.; Pawson, S.; Nielsen, J.E.; Rind, D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Clim. 2007, 20, 470–488. [Google Scholar] [CrossRef]
MC | PI | LGMPROXY | LGMPMIP3 | |
---|---|---|---|---|
SATG | 15 | 14.4 | 10.6 | 10.1 |
SSTG | 18.4 | 18 | 16.6 | 16.2 |
SST10S-10N | 27.2 | 27.3 | 26 | 25.1 |
PTT at 10 hPa | 26.8 ± 3.4 | 27.1 ± 2.2 | 32.9 ± 3.0 | 40.5 ± 3.7 |
ATT at 10 hPa | 17.3 ± 0.9 | 17.4 ± 1.3 | 16.1 ± 1.7 | 16.9 ± 1.5 |
ADD at 10 hPa | 17.9 | 18.2 | 16.5 | 17.6 |
PTT at 30 hPa | 26.8 ± 2.8 | 27 ± 2 | 33 ± 2.7 | 40.6 ± 3.2 |
ATT at 30 hPa | 12.1 ± 1.1 | 13.2 ± 0.9 | 11.5 ± 0.6 | 12.6 ± 1.2 |
ADD at 30 hPa | 12.3 | 13.2 | 11.7 | 13.2 |
MCno_ODS | MC | PI | LGMPROXY | LGMPMIP3 | |
---|---|---|---|---|---|
SSW frequency | 0.66 | 0.48 | 0.38 | 0.4 | 0.42 |
First SSW time | Nov 11 | Nov 21 | Dec 12 | Jan 3 | Jan 26 |
Final warming day | 115 ± 16 | 119 ± 16 | 117 ± 18 | 116 ± 16 | 118 ± 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Wang, M.; White, R.H.; Pahlavan, H.A.; Alexander, B.; Wallace, J.M. Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere 2020, 11, 943. https://doi.org/10.3390/atmos11090943
Fu Q, Wang M, White RH, Pahlavan HA, Alexander B, Wallace JM. Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere. 2020; 11(9):943. https://doi.org/10.3390/atmos11090943
Chicago/Turabian StyleFu, Qiang, Mingcheng Wang, Rachel H. White, Hamid A. Pahlavan, Becky Alexander, and John M. Wallace. 2020. "Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum" Atmosphere 11, no. 9: 943. https://doi.org/10.3390/atmos11090943
APA StyleFu, Q., Wang, M., White, R. H., Pahlavan, H. A., Alexander, B., & Wallace, J. M. (2020). Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum. Atmosphere, 11(9), 943. https://doi.org/10.3390/atmos11090943