Distribution Characteristics of Aerosol Size and CCN during the Summer on Mt. Tian and Their Influencing Factors
Abstract
:1. Introduction
2. Experimental Methods
2.1. Descriptions of the Observation Site
2.2. Description of Observational Instruments
3. Results and Discussion
3.1. Overview of the Observations
3.2. Aerosol Size Distribution in Mt. Tian
3.3. Diurnal Variation Characteristics of Aerosol and CCN
3.4. Correlation between Aerosol Number Concentration and CCN
3.5. Influence of Meteorological Elements on Aerosol and CCN Distribution
3.5.1. Impact of Wind Direction and Wind Speed
3.5.2. Impact of Relative Humidity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Twomey, S.; Warner, J. Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci. 1967, 24, 702–703. [Google Scholar] [CrossRef]
- Albrecht, B. Aerosols, cloud microphysics and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Niu, F.; Fan, J.; Liu, Y.; Rosenfeld, D.; Ding, Y. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 2011, 4, 888–894. [Google Scholar] [CrossRef]
- Kohler, H. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Fitzgerald, J. Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition. J. Atmos. Sci. 1973, 30, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Rose, D.; Cheng, Y.; Gunthe, S.; Massling, A.; Stock, M.; Wiedensohler, A.; Andreae, M.; Pöschl, U. Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation. Atmos. Chem. Phys. 2010, 10, 7489–7503. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- McFiggans, G.; Artaxo, P.; Baltensperger, U.; Coe, H.; Facchini, M.; Feingold, G.; Fuzzi, S.; Gysel, M.; Laaksonen, A.; Lohmann, U.; et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 2006, 6, 2593–2649. [Google Scholar] [CrossRef] [Green Version]
- IPCC (Intergovernmental Panel on Climate Change). Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2013; 5th Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Paramonov, M.; Kerminen, V.; Gysel, M.; Aalto, P.; Andreae, M.; Asmi, E.; Baltensperger, U.; Bougiatioti, A.; Brus, D.; Frank, G.; et al. A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmos. Chem. Phys. 2015, 15, 12211–12229. [Google Scholar] [CrossRef] [Green Version]
- Schmale, J.; Henning, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Bougiatioti, A.; Kalivitis, N.; Stavroulas, I.; Jefferson, A.; et al. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Sci. Data 2017, 4, 170003. [Google Scholar] [CrossRef]
- Roy, A.; Chatterjee, A.; Sarkar, C.; Das, S.; Ghosh, S.; Raha, S. A study on aerosol-cloud condensation nuclei (CCN) activation over eastern Himalaya in India. Atmos. Res. 2017, 189, 69–81. [Google Scholar] [CrossRef]
- Shinozuka, Y.; Clarke, A.; Nenes, A.; Jefferson, A.; Wood, R.; McNaughton, C.; Ström, J.; Tunved, P.; Redemann, J.; Thornhill, K.; et al. The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: Indications of underlying aerosol processes and implications for satellite-based CCN estimates. Atmos. Chem. Phys. 2015, 15, 7585–7604. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Han, Y.; Chen, K.; Lu, C.; Yin, Y.; Tan, H.; Wang, J. Parameterization and comparative evaluation of the CCN number concentration on Mt. Huang, China. Atmos. Res. 2016, 181, 300–311. [Google Scholar] [CrossRef]
- Pöhlker, M.; Pöhlker, C.; Klimach, T.; Angelis, I.; Barbosa, H.; Brito, J.; Carbone, S.; Cheng, Y.; Chi, X.; Ditas, F.; et al. Long-term observations of atmospheric aerosol, cloud condensation nuclei concentration and hygroscopicity in the Amazon rain forest—Part 1: Size-resolved characterization and new model parameterizations for CCN prediction. Atmos. Chem. Phys. 2016, 16, 15709–15740. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Tan, H.; Chan, C.; Qin, Y.; Xu, H.; Li, F.; Schurman, S.; Liu, L.; Zhao, J. The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014. Atmos. Chem. Phys. 2018, 18, 16419–16437. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Li, P.; Fan, Y.; Hou, T. Observation analysis of cloud condensation nuclei in some regions of North China. Trans. Atmos Sci. 2012, 35, 533–540. (In Chinese) [Google Scholar]
- Zhao, Y.; Niu, S.; Lv, J.; Xu, J.; Sang, J. Observational analyses on cloud condensation nuclei in northwestern China in summer of 2007. Plateau Meteorol. 2010, 29, 1043–1049. (In Chinese) [Google Scholar]
- Wang, T.; Sun, J.; Shen, X.; Deng, Z.; Zhang, Y.; An, L.; Zhang, X.; Yan, P.; Liang, W.; Chen, L. Variation characteristics of cloud condensation nuclei at Wuqing. Meteorol. Sci. Technol. 2012, 3, 466–473. (In Chinese) [Google Scholar]
- Li, L.; Yin, Y.; Gu, X.; Chen, K.; Tan, W.; Yang, L.; Yuan, L. Observational study of cloud condensation nuclei properties at various altitudes of Huangshan Mountains. Chin. J. Atmos. Sci. 2014, 38, 410–420. (In Chinese) [Google Scholar]
- Williamson, C.; Kupc, A.; Axisa, D.; Bilsback, K.; Bui, T.; Campuzano-jost, P.; Dollner, M.; Froyd, K.; Hodshire, A.; Jimenez, J.; et al. A large source of cloud condensation nuclei from new particle formation in the tropics. Nature 2019, 574, 399–403. [Google Scholar] [CrossRef]
- Chen, C.; Hu, M.; Wu, Z.; Wu, Y.; Guo, S.; Chen, W.; Luo, B.; Shao, M.; Zhang, Y.; XIe, S. Characterization of new particle formation event in the rural site of Sichuan Basin and its contribution to cloud condensation nuclei. China Environ. Sci. 2014, 34, 2764–2772. (In Chinese) [Google Scholar]
- Clarke, A.; Freitag, S.; Simpson, R.; Hudson, J.; Howell, S.; Brekhovskikh, V.; Campos, T.; Kapustin, V.; Zhou, J. Free troposphere as a major source of CCN for the equatorial pacific boundary layer: Long-range transport and teleconnections. Atmos. Chem. Phys. 2013, 13, 7511–7529. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, D.; Shao, L.; Zhou, S.; Wang, W. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain. Atmos. Chem. Phys. 2011, 11, 11733–11744. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Yin, Y.; Xiao, H.; Yuan, L.; Gao, J.; Chen, K. Observation of new particle formation and growth on Mount Huang. China Environ. Sci. 2015, 35, 13–22. (In Chinese) [Google Scholar]
- Shen, L.; Wang, H.; Yin, Y.; Chen, J.; Chen, K. Size distribution of aerosol during the summer at the summit of Mountain Taishan (1534m) in central east China. Environ. Sci. 2019, 40, 2019–2026. (In Chinese) [Google Scholar]
- Shen, L.; Wang, H.; Yin, Y.; Chen, J.; Chen, K. Observation of atmospheric new particle growth events at the summit of mountain Tai (1534m) in central east China. Atmos. Environ. 2019, 201, 148–157. [Google Scholar] [CrossRef]
- Wang, T. The Characteristic of Cloud Condensation Nuclei in North China Plain; China Academy of Meteorological Science: Beijing, China, 2011; pp. 1–59. (In Chinese) [Google Scholar]
- Miao, Q.; Zhang, Z.; Li, Y.; Qin, X.; Xu, B.; Yuan, Y.; Gao, Y. Measurement of cloud condensation nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution. Atmos. Environ. 2015, 113, 1–58. (In Chinese) [Google Scholar] [CrossRef]
- Fan, S.; An, X. Measurement and analysis of the concentration of cloud condensation nuclei in MT. Helanshan area. J. Desert. Res. 2000, 20, 338–340. [Google Scholar]
- Cao, C. Vertical Distribution of Physical and Chemical Characteristics of PM2.5 at Mt. Hua and the New Particle Formation; Institute of Earth Environment, China Academy of Science: Xian, China, 2011; pp. 1–59. (In Chinese) [Google Scholar]
- Liu, A.; Wang, H.; Cui, Y.; Shen, L.; Yin, Y.; Wu, Z.; Guo, S.; Shi, S.; Chen, K.; Zhu, B.; et al. Characteristics of aerosol during a severe haze-fog episode in the Yangtze River Delta: Particle size distribution, chemical composition, and optical properties. Atmosphere 2020, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, V.; Nair, V.; Babu, S. CCN characteristics over a tropical coastal station during south-west monsoon: Observations and closure studies. Atmos. Environ. 2017, 164, 299–308. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, Y.; Lin, Z.; Han, Y.; Hao, J.; Yuan, L.; Chen, K.; Chen, J.; Kong, S.; Shan, Y.; et al. Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. Sci. Total Environ. 2017, 575, 309–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Chen, C.; Chen, K.; An, J.; Wang, W.; Lin, Z.; Yan, J.; Wang, J. An observational study of the microphysical properties of atmospheric aerosol at Mt. Huang. Trans. Atmos. Sci. 2010, 33, 129–136. (In Chinese) [Google Scholar]
- Philippin, S.; Betterton, E. Cloud condensation nuclei concentrations in Southern Arizona: Instrumentation and early observation. Atmos. Res. 1997, 43, 263–275. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Ervens, B.; Cubison, M.; Andrews, S.; Feingold, G.; Ogren, J.; Jimenez, J.; Decarlo, P.; Nenes, A. Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. J. Geophys. Res. 2007, 112, D10S32. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Zhao, C.; Ma, N.; Liu, P.; Ran, L.; Xu, W.; Chen, J.; Liang, Z.; Liang, S.; Huang, M.; et al. Size-resolved and bulk activation properties of aerosols in the North China. Atmos. Chem. Phys. 2011, 11, 3835–3846. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. The nuclei of natural cloud formation part I: The chemical diffusion method and its application to atmospheric nuclei. Geofis. Pure E Appl. 1959, 43, 227–242. [Google Scholar] [CrossRef]
- Hobbs, P.V.; Bowdle, D.A.; Radke, L.F. Particles in the lower troposphere over the high plains of the United States. II: Cloud condensation nuclei and deliquescent particles. J. Clim. Appl. Meteorol. 1985, 42, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
Type/Unit | Mean | Standard Deviation | Maximum | Minimum | Median |
---|---|---|---|---|---|
Temperature/°C | 15.9 | 5.1 | 29.3 | 4.2 | 15.6 |
Pressure/hPa | 807.0 | 2.3 | 812.9 | 802.1 | 806.7 |
RH/% | 56.6 | 19.7 | 96.0 | 12.0 | 56.0 |
Wind speed/m·s−1 | 2.0 | 0.8 | 5.1 | 0 | 2.0 |
Visibility/km | 28.1 | 5.2 | 30.0 | 0.3 | 30.0 |
N/cm−3 | 5475.6 | 5636.5 | 35,309.2 | 93.1 | 3505.3 |
S/μm2·cm−3 | 138.8 | 109.3 | 1473.7 | 3.4 | 110.4 |
CCN (0.1%)/cm−3 | 183.7 | 114.5 | 1278.4 | 0.3 | 164.4 |
CCN (0.2%)/cm−3 | 729.8 | 376.1 | 5388.4 | 5.6 | 668.9 |
CCN (0.4%)/cm−3 | 1630.5 | 980.5 | 7548.1 | 23.1 | 1416.4 |
CCN (0.6%)/cm−3 | 2162.5 | 1345.3 | 9552.2 | 110.8 | 1866.4 |
CCN (0.8%)/cm−3 | 2575.7 | 1632.9 | 13,347.9 | 196.2 | 2241.2 |
Type/Unit | 0.1% | 0.2% | 0.4% | 0.6% | 0.8% |
---|---|---|---|---|---|
20–40/nm | 0.29 ** | 0.28 ** | 0.28 ** | 0.31 ** | 0.35 ** |
40–60/nm | 0.46 ** | 0.50 ** | 0.59 ** | 0.65 ** | 0.70 ** |
60–80/nm | 0.44 ** | 0.57 ** | 0.72 ** | 0.74 ** | 0.74 ** |
80–100/nm | 0.42 ** | 0.59 ** | 0.70 ** | 0.68 ** | 0.66 ** |
100–300/nm | 0.52 ** | 0.65 ** | 0.64 ** | 0.60 ** | 0.58 ** |
300–500/nm | 0.70 ** | 0.59 ** | 0.53 ** | 0.49 ** | 0.49 ** |
500–1000/nm | 0.46 ** | 0.35 ** | 0.33 ** | 0.33 ** | 0.33 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Wang, H.; Li, Y.; Yin, Y.; Li, B.; Chen, K.; Cui, Y.; He, C.; Dai, M. Distribution Characteristics of Aerosol Size and CCN during the Summer on Mt. Tian and Their Influencing Factors. Atmosphere 2020, 11, 912. https://doi.org/10.3390/atmos11090912
Liu A, Wang H, Li Y, Yin Y, Li B, Chen K, Cui Y, He C, Dai M. Distribution Characteristics of Aerosol Size and CCN during the Summer on Mt. Tian and Their Influencing Factors. Atmosphere. 2020; 11(9):912. https://doi.org/10.3390/atmos11090912
Chicago/Turabian StyleLiu, Ankang, Honglei Wang, Yuanyuan Li, Yan Yin, Bin Li, Kui Chen, Yi Cui, Chuan He, and Mingming Dai. 2020. "Distribution Characteristics of Aerosol Size and CCN during the Summer on Mt. Tian and Their Influencing Factors" Atmosphere 11, no. 9: 912. https://doi.org/10.3390/atmos11090912
APA StyleLiu, A., Wang, H., Li, Y., Yin, Y., Li, B., Chen, K., Cui, Y., He, C., & Dai, M. (2020). Distribution Characteristics of Aerosol Size and CCN during the Summer on Mt. Tian and Their Influencing Factors. Atmosphere, 11(9), 912. https://doi.org/10.3390/atmos11090912