Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China
Abstract
:1. Introduction
2. Data and Method
2.1. Region of Interest
2.2. Data
2.3. Method
3. Analysis and Result
3.1. Temporal Variation of Precipitation and PM2.5
3.2. Removal Effect of Precipitation on PM2.5
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y.; He, K. The socioeconomic drivers of China’s primary PM2.5 emissions. Environ. Res. Lett. 2014, 9, 024010. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis about the spatio-temporal variation of urban air pollution in China during recent years of 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Pui, D.Y.H.; Chen, S.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Albrecht, B. Aerosol, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Garrett, T.J.; Zhao, C. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nat. Int. Wkly J. Sci. 2006, 440, 787–789. [Google Scholar] [CrossRef]
- Jahani, B.; Calbó, J.; González, J.A. Transition zone radiative effects in shortwave radiation parameterizations: Case of weather research and forecasting model. J. Geophys. Res. Atmos. 2019, 124, 13091–13104. [Google Scholar] [CrossRef]
- Twomey, S. Influence of Pollution on Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Venkataraman, C.; Bouche, O. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions. Atmos. Environ. 2011, 45, 4398–4407. [Google Scholar] [CrossRef]
- Zhao, C.; Lin, Y.; Wu, F.; Wang, Y.; Li, Z.; Rosenfeld, D.; Wang, Y. Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys. Res. Lett. 2018, 45, 8604–8611. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Garrett, T.J. Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett. 2015, 42, 557–564. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, T.; Shi, G.Y.; Solomon, S. Radiative forcing of climate change. Climate Change 2001: The Scientic Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Dingis, Y., Griggsis, D.J., Nogueris, M., van der Lindenis, P.J., Daiis, X., Maskellis, K., Johnsonis, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 349–416. [Google Scholar]
- Gong, C.; Zhang, B.; Tang, X.; Xu, G.; Zhou, Y.; Zhou, L.; Zhao, S. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5-10). Meteorol. Atmos. Phys. 2018, 130, 383–392. [Google Scholar]
- Ruchith, R.D.; Sivakumar, V. Influence of aerosol-cloud interaction on austral summer precipitation over Southern Africa during ENSO events. Atmos. Res. 2018, 202, 1–9. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, UNSP105558. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, Y.N.; Zhang, F.; Sun, Y.L.; Wang, P.C. Growth rates of fine aerosol particles at a site near Beijing in June 2013. Adv. Atmos. Sci. 2018, 35, 209–217. [Google Scholar] [CrossRef]
- Atlas, E.; Giam, C.S. Ambient concentration and precipitation scavenging of atmospheric organic pollutants. Water Air Soil Pollut. 1988, 38, 19–36. [Google Scholar]
- Garrett, T.J.; Zhao, C.; Novelli, P.C. Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B 2010, 62, 190–196. [Google Scholar] [CrossRef]
- Radke, L.F.; Hobbs, P.V.; Eltgroth, M.W. Scavenging of Aerosol Particles by Precipitation. J. Appl. Meteorol. (1962–1982) 1980, 19, 715–722. [Google Scholar]
- Sun, Y.; Zhao, C.; Su, Y.; Ma, Z.; Li, J.; Husi, L.; Yang, Y.; Fan, H. Distinct impacts of light and heavy precipitation on PM2.5 mass concentration in Beijing. Earth Space Sci. 2019, 6, 1915–1925. [Google Scholar] [CrossRef] [Green Version]
- Wesely, M.L.; Hicks, B.B. A review of the current status of knowledge on dry deposition. Atmos. Environ. 2000, 34, 2261–2282. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, S.; Padro, J.; Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X. Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci. 2012, 24, 665–674. [Google Scholar] [CrossRef]
- Steinfeld, J.H.; Pandis, S.N. Atmospheric chemistry and physics: From air pollution to climate change. Environ. Sci. Policy Sustain. Dev. 1998, 40, 1203. [Google Scholar] [CrossRef]
- Luan, T.; Guo, X.; Zhang, T.; Guo, L. Below-cloud aerosol scavenging by different intensity rains in Beijing city. J. Meteorol. Res. 2019, 33, 126–137. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Chate, D.M. Study of scavenging of submicron-sized aerosol particles by thunderstorm rain events. Atmos. Environ. 2005, 39, 6608–6619. [Google Scholar] [CrossRef]
- Mircea, M.; Fuzzi, S.; Stefan, S. Precipitation scavenging coefficient: Influence of measured aerosol and raindrop size distributions. Atmos. Environ. 2000, 34, 5169–5174. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Feng, Y.; Liang, H. The impact of meteorological factors on PM2.5 variations in Hong Kong. IOP Conf. Ser. Earth Environ. Sci. 2017, 78, 12003–12010. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, S.; Chen, X. Temporal distribution characteristics of PM2.5 and meteorological conditions in Anqing in recent four years. Meteorol. Environ. Res. 2020, 11, 7–9. [Google Scholar]
- Pranesha, T.S.; Kamra, A.K. Scavenging of aerosol particles by large water drops: 3. Washout coefficients, half-lives, and rainfall depths. J. Geophys. Res. Atmos. 1997, 102, 23947–23953. [Google Scholar] [CrossRef]
- Bae, S.Y.; Woo, J.; Park, R.J.; Kim, Y.P. Effects of below-cloud scavenging on the regional aerosol budget in East Asia. Atmos. Environ. 2012, 58, 14–22. [Google Scholar]
- Taylor, P.A.; Michelangeli, D.V.; Zhang, L. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ. 2004, 38, 4653–4665. [Google Scholar]
- Andronache, C. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys. 2003, 3, 131–143. [Google Scholar]
- Yu, C.; Deng, X.; Shi, C.; Wu, B.; Zhai, J.; Yang, G.; Huo, Y. Analysis of the removal effect of precipitation and wind on atmospheric PM2.5 and PM10. Acta Sci. Circumst. 2018, 38, 4620–4629. (In Chinese) [Google Scholar]
- Rahmati, O.; Mohammadi, F.; Ghiasi, S.S.; Tiefenbacher, J.; Moghaddam, D.D.; Coulon, F.; Nalivan, O.A.; Bui, D.T. Identifying sources of dust aerosol using a new framework based on remote sensing and modelling. Sci. Total Environ. 2020, 737, 139508. [Google Scholar] [CrossRef]
- Precititation from Chinese Meteorology Administration. Available online: http://cdc.cma.gov.cn/sksj.do?method=ssrjscprh (accessed on 1 March 2020).
- PM2.5 from Beijing Air Quality Platform. Available online: http://beijingair.sinaapp.com (accessed on 1 March 2020).
- Winds from ECMWF. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 27 April 2020).
- Olszowski, T. Changes in PM10 concentration due to large-scale rainfall. Arab. J. Geosci. 2016, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys. 2016, 16, 13309–13319. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liang, X. Observed diurnal cycle climatology of planetary boundary layer height. J. Clim. 2010, 23, 5790–5809. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, S.; Liu, C.; Guo, J. Synoptic circulation pattern and boundary layer structure associated with PM2.5 during wintertime haze pollution episodes in Shanghai. Atmos. Res. 2019, 228, 186–195. [Google Scholar] [CrossRef]
- Kluska, K.; Piotrowicz, K.; Kasprzyk, I. The impact of rainfall on the diurnal patterns of atmospheric pollen concentrations. Agric. For. Meteorol. 2020, 291, 108042. [Google Scholar] [CrossRef]
BTH | YRD | PRD | |||||||
---|---|---|---|---|---|---|---|---|---|
Precipitation (mm/h) | <0.16 | [0.16,0.40) | ≥0.40 | ≤0.16 | (0.16,0.36] | >0.36 | <0.20 | [0.20,0.56) | ≥0.56 |
Sample percentage with positive removal effect (%) | 41.28 | 45.31 | 49.58 | 43.86 | 44.76 | 44.17 | 36.33 | 37.59 | 42.79 |
Sample percentage with neutral removal effect (%) | 6.10 | 4.43 | 7.32 | 10.44 | 10.93 | 11.23 | 17.16 | 15.85 | 16.11 |
Sample percentage with negative removal effect (%) | 52.62 | 50.26 | 43.10 | 45.70 | 44.31 | 44.60 | 46.51 | 46.56 | 41.10 |
BTH | YRD | PRD | |||||||
---|---|---|---|---|---|---|---|---|---|
Pollution (μg/m3) | ≤25 | (25,55] | >55 | ≤19 | (19,37] | >37 | ≤14 | (14,26] | >26 |
Sample percentage with positive removal effect (%) | 32.87 | 49.44 | 53.99 | 33.41 | 45.38 | 54.17 | 25.42 | 40.91 | 50.94 |
Sample percentage with neutral removal effect (%) | 8.01 | 6.70 | 3.03 | 17.18 | 9.63 | 5.74 | 25.54 | 15.27 | 7.93 |
Sample percentage with negative removal effect (%) | 59.12 | 43.86 | 42.98 | 49.41 | 44.99 | 40.09 | 49.04 | 43.82 | 41.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Sun, Y.; Zhao, C.; Jiang, H. Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China. Atmosphere 2020, 11, 906. https://doi.org/10.3390/atmos11090906
Zhao X, Sun Y, Zhao C, Jiang H. Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China. Atmosphere. 2020; 11(9):906. https://doi.org/10.3390/atmos11090906
Chicago/Turabian StyleZhao, Xin, Yue Sun, Chuanfeng Zhao, and Huifei Jiang. 2020. "Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China" Atmosphere 11, no. 9: 906. https://doi.org/10.3390/atmos11090906
APA StyleZhao, X., Sun, Y., Zhao, C., & Jiang, H. (2020). Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China. Atmosphere, 11(9), 906. https://doi.org/10.3390/atmos11090906