Next Article in Journal
Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research
Next Article in Special Issue
Evolution of Plume Core Structures and Turbulence during a Wildland Fire Experiment
Previous Article in Journal
Trends of UV Radiation in Antarctica
Previous Article in Special Issue
Role of Horizontal Eddy Diffusivity within the Canopy on Fire Spread
Article

Identifying Characteristics of Wildfire Towers and Troughs

1
Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
2
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*
Author to whom correspondence should be addressed.
Atmosphere 2020, 11(8), 796; https://doi.org/10.3390/atmos11080796
Received: 29 May 2020 / Revised: 18 July 2020 / Accepted: 24 July 2020 / Published: 28 July 2020
(This article belongs to the Special Issue Atmospheric Turbulence Processes and Wildland Fires)
Wildfire behavior is dictated by the complex interaction of numerous physical phenomena including dynamic ambient and fire-induced winds, heat transfer, aerodynamic drag on the wind by the fuel and combustion. These phenomena create complex feedback effects between the fire and its surroundings. In this study, we aim to study the mechanisms by which buoyant flame dynamics along with vortical motions and instabilities control wildfire propagation. Specifically, this study employs a suite of simulations conducted with the physics-based coupled fire-atmosphere behavior model (FIRETEC). The simulations are initialized with a fire line and the fires are allowed to propagate on a grass bed, where the fuel heights and wind conditions are varied systematically. Flow variables are extracted to identify the characteristics of the alternating counter-rotational vortices, called towers and troughs, that drive convective heat transfer and fire spread. These vortices have previously been observed in wildfires and laboratory fires, and have also been observed to arise spontaneously in FIRETEC due to the fundamental physics incorporated in the model. However, these past observations have been qualitative in nature and no quantitative studies can be found in the literature which connected these coherent structures fundamental to fire behavior with the constitutive flow variables. To that end, a variety of state variables are examined in the context of these coherent structures under various wind profile and grass height conditions. Identification of various correlated signatures and fire-atmosphere feedbacks in simulations provides a hypothesis that can be tested in future observational or experimental efforts, potentially assisting experimental design, and can aid in the interpretation of data from in situ detectors. View Full-Text
Keywords: wildfire propagation; coherent structures; computation fluid dynamics; fire-atmosphere interaction; fire turbulence wildfire propagation; coherent structures; computation fluid dynamics; fire-atmosphere interaction; fire turbulence
Show Figures

Figure 1

MDPI and ACS Style

Banerjee, T.; Holland, T.; Solander, K.; Holmes, M.; Linn, R. Identifying Characteristics of Wildfire Towers and Troughs. Atmosphere 2020, 11, 796. https://doi.org/10.3390/atmos11080796

AMA Style

Banerjee T, Holland T, Solander K, Holmes M, Linn R. Identifying Characteristics of Wildfire Towers and Troughs. Atmosphere. 2020; 11(8):796. https://doi.org/10.3390/atmos11080796

Chicago/Turabian Style

Banerjee, Tirtha, Troy Holland, Kurt Solander, Marlin Holmes, and Rodman Linn. 2020. "Identifying Characteristics of Wildfire Towers and Troughs" Atmosphere 11, no. 8: 796. https://doi.org/10.3390/atmos11080796

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop