Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN)
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Artificial Neural Network
3. Results
3.1. Odor Characteristics
3.2. Odor Prediction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.; Lee, H.; Choi, E.; Choi, I.; Shin, T.; Im, H.; Ahn, S. Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer. Chemosphere 2014, 117, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Lewkowska, P.; Cieślik, B.; Dymerski, T.; Konieczka, P.; Namieśnik, J. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 2016, 151, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rodríguez, A.; Camara, V.F.; Campo, F.; Becherán, L.; Durán, A.; Vieira, V.D.; Garcia-Ramirez, A.R. Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 2018, 134, 92–100. [Google Scholar] [PubMed]
- Park, S.; Kim, M.; Kim, M.; Namgung, H.G.; Kim, K.T.; Cho, K.H.; Kwon, S.B. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). J. Hazard. Mater. 2018, 341, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Zhu, J.; Knoll, W. From gas sensors to biomimetic artificial noses. Chemosensors 2018, 6, 32. [Google Scholar] [CrossRef]
- Nozaki, Y.; Nakamoto, T. Odor impression prediction from mass spectra. PLoS ONE 2016, 11, e0157030. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Liu, C.; Tomiura, Y.; Hayashi, K. Machine-learning-based olfactometer: Prediction of odor perception from physicochemical features of odorant molecules. Anal. Chem. 2017, 89, 11999–12005. [Google Scholar] [CrossRef] [PubMed]
- Zarra, T.; Galang, G.; Ballesteros, F., Jr.; Belgiorno, V.; Naddeo, V. Environmental odour management by artificial neural network—A review. Environ. Int. 2019, 133, 105189. [Google Scholar] [CrossRef] [PubMed]
- Byliński, H.; Sobecki, A.; Gębicki, J. The use of artificial neural networks and decision trees to predict the degree of odor nuisance of post-digestion sludge in the sewage treatment plant process. Sustainability 2019, 11, 4407. [Google Scholar] [CrossRef]
- Mirshahi, M.; Partovi Nia, V.; Adjengue, L. Automatic odor prediction for electronic nose. J. Appl. Stat. 2018, 45, 2788–2799. [Google Scholar] [CrossRef]
- Onkal-Engin, G.; Demir, I.; Engin, S.N. Determination of the relationship between sewage odour and BOD by neural networks. Environ. Model. Softw. 2005, 20, 843–850. [Google Scholar] [CrossRef]
- CEN, E. Air Quality-Determination of Odor Concentration by Dynamic Olfactometry; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- Nagata, Y.; Takeuchi, N. Measurement of odor threshold by triangle odor bag method. Odor Meas. Rev. Chem. 2003, 118, 118–127. [Google Scholar]
- Dou, M.; Qin, C.; Li, G.; Wang, C. Research on calculation method of free flow discharge based on artificial neural network and regression analysis. Flow Meas. Instrum. 2020, 72, 101707. [Google Scholar] [CrossRef]
- Janes, K.R.; Yang, S.X.; Hacker, R.R. Pork farm odour modelling using multiple-component multiple-factor analysis and neural networks. Appl. Soft Comput. 2005, 6, 53–61. [Google Scholar] [CrossRef]
- Qdais, H.A.; Hani, K.B.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le Roux, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2019, 201, 1–12. [Google Scholar] [CrossRef]
Odor (Unit) | Threshold a (ppm, v/v) | Grit Chamber (MW) | 1st Sediment Tank (MW) | Aerobic Biotreatment | Anaerobic Biotreatment | Grit Chamber (IW) | 1st Sediment Tank (IW) |
---|---|---|---|---|---|---|---|
Olfactometry (OU/m3) | – | 2080–3000 | 2080–3000 | 669–1000 | 100–300 | 3000–30,000 | 10,000–30,000 |
Hydrogen Sulfide (μmole/mole) | 0.00041 | 14.835–29.070 | 2.202–11.200 | ND b | ND | 1.142–253.75 | 109.000–138.250 |
Methyl Mercaptan (μmole/mole) | 0.000070 | 0.141–0.337 | 0.211–0.294 | 0.111–0.205 | 0.003–0.004 | 0.259–2.353 | 0.000–1.116 |
Dimethyl Sulfide (μmole/mole) | 0.0030 | ND | 0.000–0.074 | 0.059–0.061 | 0.003–0.005 | 0.047–0.328 | ND |
Acetaldehyde (μmole/mole) | 0.0015 | ND | 0.130-0.335 | ND | ND | ND | 0.066–0.102 |
Butylaldehyde (μmole/mole) | 0.00067 | ND | 0.025-0.693 | ND | ND | ND | 0.008–0.013 |
Ranking | Content | R2 |
---|---|---|
1 | Water Temperature | 0.6633 |
2 | BOD | 0.7027 |
3 | TSS | 0.7064 |
4 | VSS | 0.7133 |
5 | pH | 0.7174 |
6 | ORP | 0.7336 |
7 | DO | 0.7432 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-H.; Song, J.; Yoo, S.S.; Lee, B.-J.; Ji, H.W. Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere 2020, 11, 784. https://doi.org/10.3390/atmos11080784
Kang J-H, Song J, Yoo SS, Lee B-J, Ji HW. Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere. 2020; 11(8):784. https://doi.org/10.3390/atmos11080784
Chicago/Turabian StyleKang, Jeong-Hee, JiHyeon Song, Sung Soo Yoo, Bong-Jae Lee, and Hyon Wook Ji. 2020. "Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN)" Atmosphere 11, no. 8: 784. https://doi.org/10.3390/atmos11080784
APA StyleKang, J.-H., Song, J., Yoo, S. S., Lee, B.-J., & Ji, H. W. (2020). Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere, 11(8), 784. https://doi.org/10.3390/atmos11080784