The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow
Abstract
:1. Introduction
2. Data and Methods
2.1. Location and Instrumentation
2.1.1. Precipitation Imaging Package
2.1.2. Snow Field Observations
2.1.3. Accumulation Gauge
2.1.4. MicroRain Radar
2.1.5. Surface Meteorological Observations
2.2. Methods for Estimating Snow Properties
2.2.1. PIP-Derived Data Products
2.2.2. von Lerber Mass Retrieval
2.2.3. Wood Mass Retrieval
2.3. Snow Event Selection
3. Results and Discussion
3.1. Low and High SLR Snow Event Characteristics
3.2. Snow Microphysical Characteristics
3.3. Bulk Snowfall Characteristics
3.4. Detailed Example of a Snow Transition Event
4. Conclusions
5. Data Availability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter Symbol | Parameter Description | Units |
---|---|---|
De | area-equivalent diameter | mm |
DVe | volume-equivalent diameter | mm |
Dm | mass-weighted mean diameter | mm |
particle distribution equivalent density | g cm−3 | |
bulk equivalent density | g cm−3 | |
size-averaged density | g cm−3 | |
water density | g cm−3 | |
minimum density boundary condition | g cm−3 | |
R | liquid water equivalent precipitation rate | mm h−1 |
m(De) | mass distribution | g |
V(De) | velocity distribution | m s−1 |
Vmax(De) | maximum fall speed for rain drop of De | m s−1 |
Vref | minimum fall speed boundary condition | m s−1 |
N(De) | size distribution | m−3 mm−1 |
Appendix B
References
- Klazura, G.E.; Imy, D.A. A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Am. Meteorol. Soc. 1993, 74, 1293–1312. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Liu, G. Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Kulie, M.S.; Bennartz, R.; Greenwald, T.J.; Chen, Y.; Weng, F. Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci. 2010, 67, 3471–3487. [Google Scholar] [CrossRef] [Green Version]
- Skofronick-Jackson, G.M.; Johnson, B.T.; Munchak, S.J. Detection thresholds of falling snow from satellite-borne active and passive sensors. IEEE TGRS 2013, 51, 4177–4189. [Google Scholar] [CrossRef] [Green Version]
- Wood, N.B.; L’Ecuyer, T.S.; Bliven, F.L.; Stephens, G.L. Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech. 2013, 6, 3635–3648. [Google Scholar] [CrossRef] [Green Version]
- Von Lerber, A.; Moisseev, D.; Marks, D.A.; Petersen, W.; Harri, A.M.; Chandrasekar, V. Validation of GMI Snowfall Observations by Using a Combination of Weather Radar and Surface Measurements. J. Appl. Meteorol. Climatol. 2018, 57, 797–820. [Google Scholar] [CrossRef]
- Hiley, M.J.; Kulie, M.S.; Bennartz, R. Uncertainty analysis for CloudSat snowfall retrievals. J. Appl. Meteorol. Climatol. 2011, 50, 399–418. [Google Scholar] [CrossRef]
- Kneifel, S.; Kulie, M.S.; Bennartz, R. A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res. 2011, 116, D11203. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.T.; Petty, G.W.; Skofronick-Jackson, G. Microwave properties of ice-phase hydrometeors for radar and radiometers: Sensitivity to model assumptions. J. Appl. Meteorol. Climatol. 2012, 51, 2152–2171. [Google Scholar] [CrossRef] [Green Version]
- Olson, W.S.; Tian, L.; Grecu, M.; Kuo, K.S.; Johnson, B.T.; Heymsfield, A.J.; Bansemer, A.; Heymsfield, G.M.; Wang, J.R.; Meneghini, R. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations. J. Appl. Meteorol. Climatol. 2016, 55, 709–722. [Google Scholar] [CrossRef]
- Wood, N.B.; L’Ecuyer, T.S.; Heymsfield, A.J.; Stephens, G.L. Microphysical constraints on millimeter-wavelength scattering properties of snow particles. J. Appl. Meteorol. Climatol. 2015, 54, 909–931. [Google Scholar] [CrossRef] [Green Version]
- Tyynelä, J.; von Lerber, A. Validation of Microphysical Snow Models Using In Situ, Multifrequency, and Dual-Polarization Radar Measurements in Finland. J. Geophys. Res. Atmos. 2019, 124, 13273–13290. [Google Scholar] [CrossRef]
- Tiira, J.; Moisseev, D.N.; von Lerber, A.; Ori, D.; Tokay, A.; Bliven, L.F.; Petersen, W. Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland. Atmos. Meas. Tech. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.J.; Kucera, P.A.; Bliven, L.F. Presenting the snowflake video imager (SVI). J. Atmos. Ocean. Technol. 2009, 26, 167–179. [Google Scholar] [CrossRef]
- von Lerber, A.; Moisseev, D.; Bliven, L.F.; Petersen, W.; Harri, A.M.; Chandrasekar, V. Microphysical properties of snow and their link to Ze–S relations during BAECC 2014. J. Appl. Meteorol. Climatol. 2017, 56, 1561–1582. [Google Scholar] [CrossRef]
- Falconi, M.T.; Lerber, A.V.; Ori, D.; Marzano, F.S.; Moisseev, D. Snowfall retrieval at X, Ka and W bands: Consistency of backscattering and microphysical properties using BAECC ground-based measurements. Atmos. Meas. Tech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, C.; Kulie, M.S.; Bliven, L.F.; Merrelli, A.J.; Petersen, W.A.; Wagner, T.J.; Wolff, D.B.; Wood, N.B. A composite analysis of snowfall modes from four winter seasons in Marquette, Michigan. J. Appl. Meteorol. Climatol. 2020, 59, 103–124. [Google Scholar] [CrossRef]
- Kulie, M. Upper Great Lakes Snowfall: Lessons Learned from a Multi-Sensor Snowfall Observatory; BAMS: Boston, MA, USA, submitted.
- Chase, R.J.; Nesbitt, S.W.; McFarquhar, G.M. Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere 2020, 11, 619. [Google Scholar] [CrossRef]
- Adhikari, A.; Liu, C.; Kulie, M.S. Global distribution of snow precipitation features and their properties from 3 years of GPM observations. J. Climatol. 2018, 31, 3731–3754. [Google Scholar] [CrossRef]
- Casella, D.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Johnson, B.T.; Kulie, M.S. Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res. 2017, 197, 64–75. [Google Scholar] [CrossRef]
- Panegrossi, G.; Rysman, J.F.; Casella, D.; Marra, A.C.; Sanò, P.; Kulie, M.S. CloudSat-based assessment of GPM Microwave Imager snowfall observation capabilities. Remote Sens. 2017, 9, 1263. [Google Scholar] [CrossRef] [Green Version]
- Bennartz, R.; Fell, F.; Pettersen, C.; Shupe, M.D.; Schuettemeyer, D. Spatial and temporal variability of snowfall over Greenland from CloudSat observations. ACP 2019, 19, 8101–8121. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Behrangi, A.; Lambrigtsen, B.; Kirstetter, P.E. Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using SNOTEL measurements over mountainous regions in western United States. Remote Sens. 2016, 8, 904. [Google Scholar] [CrossRef] [Green Version]
- Kochendorfer, J.; Rasmussen, R.; Wolff, M.; Baker, B.; Hall, M.E.; Meyers, T.; Landolt, S.; Jachcik, A.; Isaksen, K.; Brækkan, R.; et al. The quantification and correction of wind-induced precipitation measurement errors. Hydrol. Earth Syst. Sci. 2017, 21, 1973. [Google Scholar] [CrossRef] [Green Version]
- Wolff, M.A.; Isaksen, K.; Petersen-Øverleir, A.; Ødemark, K.; Reitan, T.; Brækkan, R. Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: Results of a Norwegian field study. Hydrol. Earth Syst. Sci. 2015, 19, 951. [Google Scholar] [CrossRef]
- Kochendorfer, J.; Nitu, R.; Wolff, M.; Mekis, E.; Rasmussen, R.; Baker, B.; Earle, M.E.; Reverdin, A.; Wong, K.; Smith, C.D.; et al. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci. 2018, 22, 1437. [Google Scholar] [CrossRef] [Green Version]
- Wood, N.B.; L’Ecuyer, T.S.; Heymsfield, A.J.; Stephens, G.L.; Hudak, D.R.; Rodriguez, P. Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos. 2014, 119, 8941–8961. [Google Scholar] [CrossRef]
- Rasmussen, R.; Baker, B.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.P.; Black, J.; Thériault, J.M.; Kucera, P.; Gochis, D.; et al. How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef] [Green Version]
- Goodison, B.E.; Louie, P.Y.; Yang, D. WMO Solid Precipitation Measurement Intercomparison. 1998. Available online: https://globalcryospherewatch.org/bestpractices/docs/WMOtd872.pdf (accessed on 1 June 2020).
- Bliven, L.F.; Pettersen, C.; Kulie, M.S.; von Lerber, A.; Wood, N.B.; Langlieb, N.; Mateling, M.E.; Moisseev, D.N.; Munchak, S.J.; Petersen, W.A.; et al. The Precipitation Imaging Package: Precipitation phase partitioning. Atmosphere. in preparation.
- Klugmann, D.; Heinsohn, K.; Kirtzel, H.J. A low cost 24 GHz FM-CW Doppler radar rain profiler. Contrib. Atmos. Phys. 1996, 61, 247–253. [Google Scholar]
- Maahn, M.; Kollias, P. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech. 2012, 5, 2661–2673. [Google Scholar] [CrossRef] [Green Version]
- Skofronick-Jackson, G.M.; Hudak, D.; Petersen, W.; Nesbitt, S.W.; Chandrasekar, V.; Durden, S.; Gleicher, K.J.; Huang, G.J.; Joe, P.; Kollias, P.; et al. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteorol. Soc. 2015, 96, 1719–1741. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K.; Zhang, G.; Schönhuber, M.; Rasmussen, R.M. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteorol. Climatol. 2007, 46, 634–650. [Google Scholar] [CrossRef]
- Huang, G.J.; Bringi, V.N.; Moisseev, D.; Petersen, W.A.; Bliven, L.F.; Hudak, D. Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment. Atmos. Res. 2015, 153, 34–48. [Google Scholar] [CrossRef]
- Böhm, H.P. A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci. 1989, 46, 2419–2427. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W. Path-and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteorol. 1977, 16, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Milbrandt, J.A.; Glazer, A.; Jacob, D. Predicting the snow-to-liquid ratio of surface precipitation using a bulk microphysics scheme. Mon. Weather Rev. 2012, 140, 2461–2476. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Heymsfield, A.J. Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci. 2005, 62, 1637–1644. [Google Scholar] [CrossRef]
- Khvorostyanov, V.I.; Curry, J.A. Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci. 2005, 62, 4343–4357. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Westbrook, C.D. Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci. 2010, 67, 2469–2482. [Google Scholar] [CrossRef] [Green Version]
- Szyrmer, W.; Zawadzki, I. Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci. 2010, 67, 3319–3335. [Google Scholar] [CrossRef] [Green Version]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Boggs, P.T.; Byrd, R.H.; Rogers, J.E.; Schnabel, R.B. User’s Reference Guide for ODRPACK Version 2.01 Software for Weighted Orthogonal Distance Regression; NISTIR 92-4834; US. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1992; p. 99.
- Wood, N.B.; L’Ecuyer, T.S. What millimeter-wavelength radar reflectivity reveals about snowfall: An information-centric analysis. Atmos. Meas. Tech. Disc. submitted.
- Moisseev, D.; von Lerber, A.; Tiira, J. Quantifying the effect of riming on snowfall using ground-based observations. J. Geophys. Res. Atmos. 2017, 122, 4019–4037. [Google Scholar] [CrossRef] [Green Version]
- Potter, J.G. Water Content of Freshly Fallen Snow; CIR-4232, TEC-569; Meteorology Branch, Dept. of Transport: Toronto, ON, Canada, 1965; p. 12.
- Ware, E.C.; Schultz, D.M.; Brooks, H.E.; Roebber, P.J.; Bruening, S.L. Improving snowfall forecasting by accounting for the climatological variability of snow density. Weather Forecast. 2006, 21, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Hallett, J. Field and laboratory observations of ice crystal growth from the vapor. J. Atmos. Sci. 1965, 22, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.W.; Johnson, J.J. Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeorol. 2004, 5, 471–486. [Google Scholar] [CrossRef]
- Baxter, M.A.; Graves, C.E.; Moore, J.T. A climatology of snow-to-liquid ratio for the contiguous United States. Weather Forecast. 2005, 20, 729–744. [Google Scholar] [CrossRef]
- Lo, K.K.; Passarelli, R.E. The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci. 1982, 39, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Braham, R.R., Jr. Snow particle size spectra in lake effect snows. J. Appl. Meteorol. 1990, 29, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Field, P.; Bansemer, A. Exponential size distributions for snow. J. Atmos. Sci. 2008, 65, 4017–4031. [Google Scholar] [CrossRef]
- Woods, C.P.; Stoelinga, M.T.; Locatelli, J.D. Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. J. Atmos. Sci. 2008, 65, 189–205. [Google Scholar] [CrossRef]
- Atlas, D.; Matrosov, S.Y.; Heymsfield, A.J.; Chou, M.D.; Wolff, D.B. Radar and radiation properties of ice clouds. J. Appl. Meteorol. 1995, 34, 2329–2345. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y.; Korolev, A.V.; Heymsfield, A.J. Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Ocean. Tech. 2002, 19, 1003–1018. [Google Scholar] [CrossRef]
- Barthold, F.E.; Kristovich, D.A. Observations of the cross-lake cloud and snow evolution in a lake-effect snow event. Mon. Weather Rev. 2011, 139, 2386–2398. [Google Scholar] [CrossRef]
- Seto, S.; Shimozuma, T.; Iguchi, T.; Kozu, T. Spatial and temporal variations of mass-weighted mean diameter estimated by GPM/DPR. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3938–3940. [Google Scholar]
- Kulie, M.S.; Bennartz, R. Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteorol. Climatol. 2009, 48, 2564–2580. [Google Scholar] [CrossRef] [Green Version]
- Braham, R.R., Jr.; Kristovich, D.A.R.; Dungey, M.J. Comparison of lake-effect snow precipitation rates determined from radar and aircraft measurements. J. Appl. Meteorol. 1992, 31, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Owens, N.D.; Rauber, R.M.; Jewett, B.F.; McFarquhar, G.M. The Contribution of Lake Enhancement to Extreme Snowfall within the Chicago–Milwaukee Urban Corridor during the 2011 Groundhog Day Blizzard. Mon. Weather Rev. 2017, 145, 2405–2420. [Google Scholar] [CrossRef]
Start (Date/Time) | End (Date/Time) | Mean SLR NWS | Mean SR PIP (mm h−1) | Mean WS (m s−1) | Mean Temp (°C) |
---|---|---|---|---|---|
11 November 2017 0600 UTC | 11 November 2017 1200 UTC | 12.14 | 0.899 | 3.33 | −5.25 |
11 December 2017 1300 UTC | 11 December 2017 1900 UTC | 15 | 0.095 | 3.28 | −8.95 |
13 December 2017 1000 UTC | 13 December 2017 1800 UTC | 13 | 0.278 | 1.55 | −11.49 |
4 January 2018 0000 UTC | 6 January 2018 1600 UTC | 15.03 | 0.137 | 3.42 | −17.16 |
22 January 2018 1800 UTC | 23 January 2018 0300 UTC | 7.5 | 3.751 | 3.96 | −3.53 |
3 February 2018 1800 UTC | 4 February 2018 0400 UTC | 12 | 0.316 | 1.83 | −12.88 |
12 April 2018 0800 UTC | 12 April 2018 1600 UTC | 10.45 | 1.672 | 0.88 | −0.46 |
15 April 2018 1000 UTC | 15 April 2018 2300 UTC | 7.34 | 3.134 | 6.00 | −6.41 |
2 December 2018 0600 UTC | 3 December 2018 0300 UTC | 9.11 | 2.455 | 4.73 | −1.74 |
7 January 2019 0700 UTC | 7 January 2019 2300 UTC | 12.65 | 1.035 | 3.47 | −2.22 |
20 January 2019 0600 UTC | 21 January 2019 0600 UTC | 14.89 | 0.274 | 2.87 | −16.89 |
Start (Date/Time) | End (Date/Time) | Mean SLR NWS | Mean SR PIP (mm h−1) | Mean WS (m s−1) | Mean Temp (°C) |
---|---|---|---|---|---|
14 December 2017 0000 UTC | 14 December 2017 0800 UTC | 32.75 | 0.259 | 2.59 | −10.21 |
15 January 2018 2200 UTC | 16 January 2018 2000 UTC | 36.39 | 0.351 | 1.00 | −9.76 |
28 January 2018 0800 UTC | 28 January 2018 2300 UTC | 70 | 0.054 | 2.48 | −8.86 |
6 March 2018 1800 UTC | 7 March 2018 2300 UTC | 27.58 | 0.511 | 3.24 | −7.26 |
13 March 2018 0400 UTC | 7 March 2018 2300 UTC | 30.33 | 0.132 | 3.94 | −7.78 |
17 November 2018 0000 UTC | 17 November 2018 2100 UTC | 29.62 | 0.148 | 3.14 | −6.04 |
25 November 2018 1200 UTC | 26 November 2018 2000 UTC | 30 | 0.079 | 3.49 | −5.43 |
10 January 2019 0000 UTC | 10 January 2019 2300 UTC | 59 | 0.053 | 3.39 | −10.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettersen, C.; Bliven, L.F.; von Lerber, A.; Wood, N.B.; Kulie, M.S.; Mateling, M.E.; Moisseev, D.N.; Munchak, S.J.; Petersen, W.A.; Wolff, D.B. The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow. Atmosphere 2020, 11, 785. https://doi.org/10.3390/atmos11080785
Pettersen C, Bliven LF, von Lerber A, Wood NB, Kulie MS, Mateling ME, Moisseev DN, Munchak SJ, Petersen WA, Wolff DB. The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow. Atmosphere. 2020; 11(8):785. https://doi.org/10.3390/atmos11080785
Chicago/Turabian StylePettersen, Claire, Larry F. Bliven, Annakaisa von Lerber, Norman B. Wood, Mark S. Kulie, Marian E. Mateling, Dmitri N. Moisseev, S. Joseph Munchak, Walter A. Petersen, and David B. Wolff. 2020. "The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow" Atmosphere 11, no. 8: 785. https://doi.org/10.3390/atmos11080785
APA StylePettersen, C., Bliven, L. F., von Lerber, A., Wood, N. B., Kulie, M. S., Mateling, M. E., Moisseev, D. N., Munchak, S. J., Petersen, W. A., & Wolff, D. B. (2020). The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow. Atmosphere, 11(8), 785. https://doi.org/10.3390/atmos11080785