End of the Day (EOD) Judgment for Daily Rain-Gauge Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rain-Gauge Data
2.2. CMORPH
2.3. ERA-Interim
2.4. Definition of EOD
2.5. Methodology for EOD Estimation
3. Results and Discussion
3.1. Evaluation of EOD Estimation Methodology
3.2. Offline Data
3.3. GSOD Data
3.4. Impact of EOD on the Evaluation of Extreme Events
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Country Name | Source | Flag of GSOD | d/e | EOD | V1801 Target | Period |
China | Offline | - | d | 12 | ● | 1998–2007 |
Offline | - | d | 24 | ● | 2008–2015 | |
Japan | Offline | - | d | 15 | ● | 1998–2015 |
GSOD | D | e | 10 | × | - | |
GSOD | G | e | 0 | × | - | |
Korea | Offline | - | e | 14 | ● | 1998–2015 |
N. Korea | GSOD | F | e | 10 | ● | 1998–2015 |
GSOD | G | e | 0 | × | - | |
Macao | GSOD | D | - | - | ● | 1998 |
GSOD | F | e | 13 | ● | 1999–2016 | |
GSOD | G | e | 3 | × | - | |
Mongolia | Offline | - | d | 12 | ● | 1998–2015 |
Taiwan | Offline | - | e | 18 | × | - |
Offline | - | e | 15 | ● | 1998–2006 | |
Offline | - | - | - | ● | 2007–2015 | |
Brunei | GSOD | G | e | 2 | ● | 1998–2015 |
Cambodia | Offline | - | e | 17 | ● | 1998–1999 |
Offline | - | e | 24 | ● | 2000–2013 | |
GSOD | G | e | 10 | ● | 2014–2015 | |
Indonesia | Offline | - | e | 0 | ● | 1998–2004 |
Offline | - | e | 0 | × | - | |
GSOD | F | e | 10 | × | - | |
GSOD | D | e | 21 | ● | 2005–2015 | |
Laos | Offline | - | e | 24 | ● | 1998–2003 |
GSOD | D | e | 5 | × | - | |
GSOD | G | e | 0 | ● | 2004–2015 | |
Malaysia | Offline | - | e | 24 | ● | 1998–2003 |
Offline | - | e | 24 | × | - | |
Offline | - | e | 0 | ● | 2004–2014 | |
GSOD | G | e | 0 | ● | 2004–2015 | |
Myanmar | Offline | - | e | 2 | ● | 1998–2014 |
GSOD | G | e | 24 | × | - | |
Philippines | Offline | - | e | 24 | ● | 1998–2015 |
GSOD | D | e | −4 | × | - | |
GSOD | G | e | −24 | × | - | |
Singapore | Offline | - | - | - | ● | 1998–2002 |
GSOD | G | e | 3 | ● | 2003–2015 | |
Thailand | Offline | - | e | 24 | ● | 1998–2015 |
GSOD | G | e | 18 | ● | 2008–2009 | |
Vietnam | Offline | - | e | 12 | ● | 1998–2006 |
Offline | - | e | 12 | × | - | |
GSOD | G | e | 12 | ● | 2007–2015 | |
Afghanistan | GSOD | G | e | 4 | ● | 1998–2015 |
Bangladesh | Offline | - | e | 0 | × | - |
Offline | - | e | 24 | ● | 1998–2007 | |
Offline | - | e | 24 | × | - | |
Offline | - | e | 3 | ● | 2008–2015 | |
GSOD | G | e | 18 | × | - | |
Bhutan | Offline | - | e | 4 | ● | 1998–2015 |
India | Offline | - | d | 3 | ● | 1998–2015 |
Offline | - | d | 3 | × | - | |
GSOD | G | e | 0 | × | - | |
Maldives | GSOD | D | - | - | ● | 2002 |
GSOD | G | e | 0 | ● | 1998–2015 | |
Nepal | Offline | - | d | 3 | ● | 1998–2015 |
Offline | - | e | 0 | × | - | |
Offline | - | e | 3 | × | - | |
Pakistan | Offline | - | e | 0 | ● | 1998–2007 |
Offline | - | e | 4 | × | - | |
GSOD | D | e | 0 | × | - | |
GSOD | F | e | 11 | × | - | |
GSOD | G | e | 2 | ● | 2008–2015 | |
Sri Lanka | Offline | - | e | 24 | ● | 1998–2004 |
GSOD | G | e | 8 | ● | 2005–2015 |
References
- Kim, I.-W.; Oh, J.; Woo, S.; Kripalani, R.H. Evaluation of rainfall extreme over the Asian domain: Observation and modeling studies. Clim. Dyn. 2019, 52, 1317–1342. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Levizzani, V. Status of satellite rainfall retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Mikaelidis, S. Rainfall: Advances in Measurement, Estimation, and Prediction; Springer: Berlin/Heidelberg, Germany, 2008; 540p. [Google Scholar]
- Chen, M.; Xie, P.; Janowiak, J.E.; Arkin, P.A. Global Land Rainfall: A 50-yr Monthly Analysis Based on Gauge Observations. J. Hydrometeorol. 2002, 3, 249–266. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H.; Lin, Q.G.; Li, Z.; Zhang, H.; Fan, Y.R. Comparison of interpolation methods for estimating the spatial distribution of rainfall in Ontario, Canada. Int. J. Climatol. 2014, 34, 3745–3751. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Rainfall Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Yasutomi, N.; Hamada, A.; Yatagai, A. Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily rainfall. Global Environ. Res. 2011, 15, 165–172. [Google Scholar]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global Land-Based Datasets for Monitoring Climatic Extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Lawrimore, J.H.; Menne, M.J.; Gleason, B.E.; Williams, C.N.; Wuertz, D.B.; Vose, R.S.; Rennie, J. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface rainfall climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Steefan Contractor, S.; Alexander, L.V.; Donat, M.G.; Nicholas, H. How well do gridded datasets of observed daily rainfall compare over Australia. Adv. Meteorol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A Gauge-Based Analysis of Daily Rainfall over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Yatagai, A.; Maeda, M.; Masuda, M.; Suetou, N.; Yasutomi, N.; Khadgarai, S. Asian Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation of Extreme Events (APHRODITE-2). IPSJ Tohoku Branch SIG Technical Report. 2019. 2018-9-A2-2. Available online: http://www.topic.ad.jp/ipsj-tohoku/lib/exe/fetch.php?media=report:20180221-a2-2.pdf (accessed on 21 June 2020).
- Hamada, A.; Arakawa, O.; Yatagai, A. An automated quality control method for daily rain-gauge data. Glob. Environ. Res. 2011, 15, 183–192. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Rainfall Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, Bias-Corrected CMORPH Global High-Resolution Rainfall Estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based rainfall estimates. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Joyce, R.J. Integrating Information from Satellite Observations and Numerical Models for Improved Global Precipitation Analyses. In Remote Sensing of the Terrestrial Water Cycle; Lakshmi, V., Alsdorf, D., Anderson, M., Biancamaria, S., Cosh, M., Entin, J., Huffman, G., Kustas, W., van Oevelen, P., Painter, T., et al., Eds.; American Geophysical Union: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Sunilkumar, K.; NarayanaRao, T.; Saikranthi, K.; Purnachandra Rao, M. Comprehensive evaluation of multi-satellite rainfall estimates over India using gridded rainfall data. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef] [Green Version]
- Sunilkumar, K.; NarayanaRao, T.; Satheeshkumar, S. Assessment of small-scale variability of rainfall and multi-satellite rainfall estimates using measurements from a dense rain gauge network in Southeast India. Hydrol. Earth Syst. Sci. 2016, 20, 1719–1735. [Google Scholar] [CrossRef] [Green Version]
- Sunilkumar, K.; Yatagai, A.; Masuda, M. Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Space Sci. 2019, 6, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
Flag | Notes |
---|---|
A | 1 report of 6-h precipitation amount |
B | Summation of 2 reports of 6-h precipitation amount |
C | Summation of 3 reports of 6-h precipitation amount |
D | Summation of 4 reports of 6-h precipitation amount |
E | 1 report of 12-h precipitation amount |
F | Summation of 2 reports of 12-h precipitation amount |
G | 1 report of 24-h precipitation amount |
H | Station reported ‘0’ as the amount for the day but also reported at least one occurrence of precipitation |
I | Station did not report any precipitation data for the day |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yatagai, A.; Maeda, M.; Khadgarai, S.; Masuda, M.; Xie, P. End of the Day (EOD) Judgment for Daily Rain-Gauge Data. Atmosphere 2020, 11, 772. https://doi.org/10.3390/atmos11080772
Yatagai A, Maeda M, Khadgarai S, Masuda M, Xie P. End of the Day (EOD) Judgment for Daily Rain-Gauge Data. Atmosphere. 2020; 11(8):772. https://doi.org/10.3390/atmos11080772
Chicago/Turabian StyleYatagai, Akiyo, Mio Maeda, Sunilkumar Khadgarai, Minami Masuda, and Pingping Xie. 2020. "End of the Day (EOD) Judgment for Daily Rain-Gauge Data" Atmosphere 11, no. 8: 772. https://doi.org/10.3390/atmos11080772
APA StyleYatagai, A., Maeda, M., Khadgarai, S., Masuda, M., & Xie, P. (2020). End of the Day (EOD) Judgment for Daily Rain-Gauge Data. Atmosphere, 11(8), 772. https://doi.org/10.3390/atmos11080772