Ambient Gaseous Pollutants in an Urban Area in South Africa: Levels and Potential Human Health Risk
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Sampling
2.3. Health Risk Assessment
2.4. Hazard Identification
2.5. Dose-Response Assessment
2.6. Exposure Assessment
2.7. Risk Characterisation
- ADD is the average daily dose of CO, NO2, SO2, and O3 through the inhalation route
- C is the concentration of CO, NO2, SO2, and O3 in ambient air
- InhR is the inhalation rate (m3/day)
- ED is the exposure duration (days)
- BW is the body weight of the exposed group (kg)
- AT is the averaging time (days)
- EF is the exposure frequency (days/year)
- HQ is the hazard quotient
3. Results and Discussion
3.1. Mean Concentrations of NO2, SO2, CO and O3
3.2. Diurnal Variations in the Concentrations of NO2, SO2, CO and O3
3.3. Seasonal Distribution of NO2, SO2, CO and O3
3.4. Non-Carcinogenic Health Risks of NO2, SO2, CO and O3 via Inhalation Route
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brauer, M.; Amann, M.; Burnett, R.T.; Cohen, A.; Dentener, F.; Ezzati, M.; Henderson, S.B.; Krzyzanowski, M.; Martin, R.V.; Van Dingenen, R.V.; et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. Lett. 2012, 46, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Jahan, S.A.; Kabir, E. A review on human health perspective of air pollution with respect to allergies and asthma. Environ. Int. 2013, 59, 41–52. [Google Scholar] [CrossRef]
- Mustafić, H.; Jabre, P.; Caussin, C.; Murad, M.H.; Escolano, S.; Tafflet, M.; Périer, M.; Marijon, E.; Vernerey, D.; Empana, J.; et al. Main air pollutants and myocardial infarction: A systematic review and meta-analysis. JAMA 2012, 307, 713–721. [Google Scholar] [CrossRef]
- Naidoo, R.; Robins, T.G.; Batterman, S.; Mentz, G.; JACK, C. Ambient pollution and respiratory outcomes among school children in Durban, South Africa. S. Afr. J. Child Health 2013, 7, 127–134. [Google Scholar] [CrossRef]
- Happo, M.S.; Salonen, R.O.; Hälinen, A.I.; Jalava, P.I.; Pennanen, A.S.; Dormans, J.A.; Gerlofs-Nijland, M.E.; Cassee, F.R.; Kosma, V.M.; Sillanpää, M.; et al. Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal. Toxicol. 2010, 22, 402–416. [Google Scholar] [CrossRef]
- Ko, F.W.; Hui, D.S. Air pollution and chronic obstructive pulmonary disease. Respirology 2012, 17, 395–401. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Chan, C.-C.; Su, T.-C. Particulate and gaseous pollutants on inflammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease. Environ. Pollut. 2017, 223, 403–408. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Primary National Ambient Air Quality Standard for Sulfur Dioxide; Final Rule; Federal Register; Office of the Federal Register, National Archives and Records Administration: Washington, DC, USA, 2010.
- World Health Organization (WHO). Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project; WHO: Geneva, Switzerland, 2013; Available online: http://www.euro.who.int/data/assests/pdffile/0020/182432/e96762-final.pdf (accessed on 29 June 2018).
- Organisation for Economic Co-operation and Development (OECD). Environmental Performance Reviews: South Africa; OECD: Paris, France, 2013; pp. 1–204. [Google Scholar]
- National Electricity Regulator (NER). Electricity Supply Statistics for South Africa; National Electricity Regulator: Johannesburg, South Africa, 2000. [Google Scholar]
- Spalding-Fecher, R.; Matibe, D.K. Electricity and externalities in South Africa. Energy Policy 2003, 31, 721–734. [Google Scholar] [CrossRef]
- Terblanche, P.; Nel, R.; Golding, T. Household Energy Sources in South Africa: An Overview of the Impact of Air Pollution on Human Health; CSIR Environmental Services, Department of Mineral and Energy Affairs and EMSA (Pty) Ltd.: Pretoria, South Africa, 1994. [Google Scholar]
- South Africa Department of Environmental Affairs and Tourism. National Environmental Management: Air Quality Act, 2004 (ACT NO. 39 of 2004). National Ambient Air Quality Standards for Particulate matter with aerodynamic diameter less than 2.5 micron metres (PM2.5). Gov. Gaz. 2012, 1–486. [Google Scholar]
- South Africa Department of Environmental Affairs and Tourism (DEAT). The 2007 National Framework for Air Quality Management in the Republic of South Africa; DEAT: Pretoria, South Africa, 2007. [Google Scholar]
- Maji, S.; Ahmed, S.; Siddiqui, W.A.; Ghosh, S. Short term effects of criteria air pollutants on daily mortality in Delhi, India. Atmos. Environ. 2017, 150, 210–219. [Google Scholar] [CrossRef]
- City of Tshwane Agriculture and Environmental Management Department. Air Quality Management in Tshwane; Environmental Management Division; City of Tshwane Agriculture and Environmental Management Department: Pretoria, South Africa, 2016. [Google Scholar]
- Environmental Management Services Department, City of Tshwane. Available online: www.tshwane.gov.za (accessed on 25 September 2015).
- Morakinyo, O.M.; Adebowale, A.S.; Mokgobu, M.I.; Mukhola, M.S. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: An ecological study. BMJ Open. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Mokgobu, M.I.; Mukhola, M.S.; Engelbrecht, J.C. Health Risk assessment of exposure to ambient concentrations of Benzene, Toluene, and Xylene in Pretoria West, South Africa. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 489–496. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Mokgobu, M.I.; Mukhola, M.S.; Godobedzha, T. Biological composition of Respirable Particulate matter in an industrial vicinity in South Africa. Int. J. Environ. Res. Public Health 2019, 16, 629. [Google Scholar] [CrossRef] [Green Version]
- Morakinyo, O.M.; Mukhola, M.S.; Mokgobu, M.I. Concentration levels and carcinogenic and mutagenic risks of PM2.5-bound polycyclic aromatic hydrocarbons in an urban–industrial area in South Africa. Environ. Geochem. Health 2019, 42, 1–16. [Google Scholar] [CrossRef]
- Ecotech. EC9810.A & B Series. Ozone Analyser. User Manual. Available online: www.ecotech.com (accessed on 9 December 2017).
- Teledyne Advanced Pollution Instrumentation, Inc. (Teledyne API). Model T300/T300M Carbon Monoxide Analyser. 2012. Available online: http://www.teledyne-api.com/products/carbon-compound-instruments/t300 (accessed on 8 March 2017).
- Teledyne Advanced Pollution Instrumentation, Inc. (Teledyne API). Model T100 UV Fluorescence SO2 Analyzer. 2012. Available online: http://www.teledyne-api.com/products/sulfur-compound-instruments/t100 (accessed on 8 March 2017).
- Teledyne Advanced Pollution Instrumentation, Inc. (Teledyne API). Model T200 NO/NO2/NOX Analyser. 2016. Available online: http://www.teledyne-api.com/products/nitrogen-compound-instruments/t200 (accessed on 8 March 2017).
- South Africa Department of Environmental Affairs and Tourism (DEAT). National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004). In National Ambient Air Quality Standards; DEAT: Pretoria, South Africa, 2009. [Google Scholar]
- Organisation for Economic Cooperation and Development (OECD). OECD Environmental Outlook to 2030; OECD: Paris, France, 2008; Available online: www.sourceoecd.or (accessed on 8 March 2017).
- Saliba, N.A.; Nassar, J.; Hussein, F.; El Kfoury, D.E.L.; Nicolas, D.J.; El Tal, T.; Baalbaki, R. Airborne toxic pollutants: Levels, health effects, and suggested policy implementation framework in developing countries. Adv. Mol. Toxicol. 2016, 10, 187–233. [Google Scholar]
- Gratt, L.B. Air Toxic Risk Assessment and Management: Public Health Risks for Normal Operations; Van Nostrand Reinhold: New York, NY, USA, 1996. [Google Scholar]
- Statistics South Africa. Available online: www.statssa.gov.za/ (accessed on 2 September 2015).
- Muller, E.; Diab, R.D.; Binedell, M.; Hounsome, R. Health risk assessment of kerosene usage in an informal settlement in Durban, South Africa. Atmos. Environ. 2003, 37, 2015–2022. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Guidelines for exposure assessment. In Federal Register; Risk Assessment Forum, U.S. Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Risk Assessment Guidance for Superfund, Vol 1: Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989. Available online: http://www.epa.gov/superfund/programs/risk/ragsa (accessed on 20 June 2015).
- United States Environmental Protection Agency (US EPA). Exposure Factors Handbook; National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency: Washington, DC, USA, 1997. Available online: http://www.epa.gov/ncea/expofac.htm (accessed on 20 June 2015).
- Matooane, M.; Diab, R. Health risk assessment for sulfur dioxide pollution in South Durban, South Africa. Arch. Environ. Health 2003, 58, 763–770. [Google Scholar] [CrossRef]
- Adon, M.; Yoboue, V.; Galy-Lacaux, C.; Liousse, C.; Diop, B.; Doumbia, E.H.T.; Gardrat, E.; Ndiaye, S.A.; Jarnot, C. Measurements of NO2, SO2, NH3, HNO3 and O3 in West African urban Environments. Atmos. Environ. 2016, 135, 31–40. [Google Scholar] [CrossRef]
- Hassan, S.K.; El-Abssawy, A.A.; Khoder, M.I. Characteristics of gas-phase nitric acid and ammonium-nitrate-sulfate aerosol, and their gas-phase precursors in a suburban area in Cairo, Egypt. Atmos. Pollut. Res. 2013, 4, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Kirenga, B.J.; Meng, Q.; Van Gemert, F.; Aanyu-Tukamuhebwa, H.; Chavannes, N.; Katamba, A.; Obai, G.; Van Der Molen, T.; Schwander, S.; Mohsenin, V. The state of ambient air quality in two Ugandan cities: A pilot cross-sectional spatial assessment. Int. J. Environ. Res. Public Health 2015, 12, 8075–8091. [Google Scholar] [CrossRef] [Green Version]
- Chai, F.; Gao, J.; Chen, Z.; Wang, S.; Zhang, Y.; Zhang, J.; Zhang, H.; Yun, Y.; Ren, C. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J. Environ. Sci. 2014, 26, 75–82. [Google Scholar] [CrossRef]
- Pui, D.Y.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Xue, Y.; Tian, H.; Yan, J.; Zhou, Z.; Wang, J.; Nie, L.; Pan, T.; Zhou, J.; Hua, S.; Wang, Y.; et al. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China. Environ. Pollut. 2016, 213, 717–726. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Ying, Q.; Yu, J.Z.; Wu, D.; Cheng, Y.; He, K.; Jiang, J. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmos. Environ. 2012, 62, 228–242. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, P.; Ma, J.Z.; Zhu, S.; Pozzer, A.; Li, W. A high-resolution emission inventory of primary pollutants for the Huabei region, China. Atmos. Chem. Phys. 2012, 12, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Sahu, L.K.; Beig, G.; Tripathi, N.; Jaaffrey, S.N.A. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms. Environ. Pollut. 2017, 225, 291–303. [Google Scholar] [CrossRef]
- Masiol, M.; Squizzato, S.; Formenton, G.; Harrison, R.M.; Agostinelli, C. Air quality across a European hotspot: Spatial gradients, seasonality, diurnal cycles and trends in the Veneto region, NE Italy. Sci. Total Environ. 2017, 576, 210–224. [Google Scholar] [CrossRef]
- Ran, L.; Lin, W.; Deji, Y.; La, B.; Tsering, P.; Xu, X.; Wang, W. Surface gas pollutants in Lhasa, a highland city of Tibet–current levels and pollution implications. Atmos. Chem. Phys. 2014, 14, 10721–10730. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Zheng, J.; Li, R.; Huang, X.; Zhong, Z.; Zhong, L.; Lin, H. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci. Total Environ. 2015, 530, 393–402. [Google Scholar] [CrossRef]
- Sharma, S.K.; Datta, A.; Saud, T.; Saxena, M.; Mandal, T.K.; Ahammed, Y.N.; Arya, B.C. Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J. Environ. Sci. 2010, 22, 1023–1028. [Google Scholar] [CrossRef]
- Jeong, J.I.; Park, R.J. Winter monsoon variability and its impact on aerosol concentrations in East Asia. Environ. Pollut. 2017, 221, 285–292. [Google Scholar] [CrossRef]
- Liu, T.; Gong, S.; He, J.; Yu, M.; Wang, Q.; Li, H.; Liu, W.; Zhang, J.; Li, L.; Wang, X.; et al. Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China’s Jing-Jin-Ji area. Atmos. Chem. Phys. 2017, 17, 2971–2980. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Cui, L.; Li, J.; Zhao, A.; Fu, H.; Wu, Y.; Zhang, L.; Kong, L.; Chen, J. Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014–2016. Atmos. Environ. 2017, 161, 235–246. [Google Scholar] [CrossRef]
- Xu, R.G.; Tang, G.Q.; Wang, Y.S.; Tie, X.X. Analysis of a long-term measurement of air pollutants (2007–2011) in North China Plain (NCP); impact of emission reduction during the Beijing Olympic Games. Chemosphere 2016, 159, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Antony Chen, L.W.; Doddridge, B.G.; Dickerson, R.R.; Chow, J.C.; Mueller, P.K.; Quinn, J.; Butler, W.A. Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources. Geophys. Res. Lett. 2001, 28, 1711–1714. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Zhang, L. Meteorological anomalies lead to elevated O3 in the western U.S. in June 2015. Geophys. Res. Lett. 2017, 44, 1990–1997. [Google Scholar] [CrossRef]
- Skerlak, B.; Sprenger, M.; Pfahl, S.; Roches, A.; Sodemann, H.; Wernli, H. Rapid exchange between the stratosphere and the planetary boundary layer over the Tibetan Plateau. EGU Gen. Assem. Conf. Abstr. 2014, 16, 9903. [Google Scholar]
- Ghozikali, M.G.; Heibati, B.; Naddafi, K.; Kloog, I.; Conti, G.O.; Polosa, R.; Ferrante, M. Evaluation of chronic obstructive pulmonary disease (COPD) attributed to atmospheric O3, NO2, and SO2 using Air Q Model (2011–2012 year). Environ. Res. 2016, 144, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Katsouyanni, K.; Touloumi, G.; Spix, C.; Schwartz, J.; Balducci, F.; Medina, S.; Rossi, G.; Wojtyniak, B.; Sunyer, J.; Bacharova, L.; et al. Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: Results from time series data from the APHEA project. Air Pollution and Health: A European Approach. BMJ 1997, 314, 1658–1663. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Samoli, E.; Wong, C.M.; Huang, W.; Wang, Z.; Chen, B.; Kan, H. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Environ. Intl. 2012, 45, 32–38. [Google Scholar] [CrossRef]
- Santus, P.; Russo, A.; Madonini, E.; Allegra, L.; Blasi, F.; Centanni, S.; Miadonna, A.; Schiraldi, G.; Amaducci, S. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Resp. Res. 2012, 13, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidale, S.; Bonanomi, A.; Guidotti, M.; Arnaboldi, M.; Sterzi, R. Air pollution positively correlates with daily stroke admission and in hospital mortality: A study in the urban area of Como, Italy. Neurol. Sci. 2010, 31, 179–182. [Google Scholar] [CrossRef]
- Anderson, Z.J.; Kristiansen, L.C.; Anderson, K.K.; Olsen, T.S.; Hvidberg, M.; Jensen, S.S.; Ketzel, M.; Loft, S.; Sorensen, M.; Tjonneland, A.; et al. Stroke and long-term exposure to outdoor air pollution from nitrogen dioxide: A cohort study. Stroke 2012, 43, 320–325. [Google Scholar] [CrossRef] [Green Version]
Pollutant | Reference Standard Concentration | |||
---|---|---|---|---|
1 h (µg/m3) | 8 h (µg/m3) | 24 h (µg/m3) | Annual (µg/m3) | |
NO2 | 200* | - | 188*** | 40* |
SO2 | 350* | - | 125* | 50* |
CO | 29,770** | 10,305** | - | - |
O3 | 226*** | 120* | - | - |
Parameter | Definition | Value for Age Categories | Reference | |||
---|---|---|---|---|---|---|
Infant (0–1 yr.) | Child (2–5 yrs.) | Child (6–12 yrs.) | Adult (19–75 yrs.) | |||
C | Mean concentration of CO, NO2, SO2 in ambient air (μg/m3) | |||||
EF | Exposure frequency (days/year) | 350 | 350 | 350 | 350 | [19,35] |
ED | Exposure duration (years) | 1 | 6 | 12 | 30 | [35,36] |
AT | Averaging time (days); AT = ED X365 days | 365 | 2190 | 4380 | 10,950 | [35,36] |
BW | Body weight (kg) | 11.3 | 22.6 | 45.3 | 71.8 | [35,36] |
InhR | Inhalation rate (m3/day) | 9.2 | 16.74 | 21.02 | 21.4 | [35] |
Averaging Time | NO2 (µg/m3) Mean | SO2 (µg/m3) Mean | CO (µg/m3) Mean | O3 (µg/m3) Mean |
---|---|---|---|---|
1 h | 18.35 | 16.21 | 295.41 | 26.84 |
8 h | - | - | 649.90 | 33.56 |
24 h | 18.47 | 16.84 | - | - |
Annual | 39.44 | 22.46 | 722.00 | - |
Season | NO2 (µg/m3) Mean | SO2 (µg/m3) Mean | CO (µg/m3) Mean | O3 (µg/m3) Mean |
---|---|---|---|---|
Summer | 18.76 | 14.23 | 352.89 | 61.51 |
Autumn | 39.51 | 18.83 | 592.42 | 44.04 |
Winter | 70.20 | 31.80 | 1108.36 | 34.92 |
Spring | 24.43 | 18.74 | 459.03 | 59.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morakinyo, O.M.; Mukhola, M.S.; Mokgobu, M.I. Ambient Gaseous Pollutants in an Urban Area in South Africa: Levels and Potential Human Health Risk. Atmosphere 2020, 11, 751. https://doi.org/10.3390/atmos11070751
Morakinyo OM, Mukhola MS, Mokgobu MI. Ambient Gaseous Pollutants in an Urban Area in South Africa: Levels and Potential Human Health Risk. Atmosphere. 2020; 11(7):751. https://doi.org/10.3390/atmos11070751
Chicago/Turabian StyleMorakinyo, Oyewale Mayowa, Murembiwa Stanley Mukhola, and Matlou Ingrid Mokgobu. 2020. "Ambient Gaseous Pollutants in an Urban Area in South Africa: Levels and Potential Human Health Risk" Atmosphere 11, no. 7: 751. https://doi.org/10.3390/atmos11070751
APA StyleMorakinyo, O. M., Mukhola, M. S., & Mokgobu, M. I. (2020). Ambient Gaseous Pollutants in an Urban Area in South Africa: Levels and Potential Human Health Risk. Atmosphere, 11(7), 751. https://doi.org/10.3390/atmos11070751