Statistical-Observational Analysis of Skillful Oceanic Predictors of Heavy Daily Precipitation Events in the Sahel
Abstract
:1. Introduction
2. Data and Methodology
2.1. Predictor and Predictand Data Sets
2.2. The Sea Surface Temperature Based Statistical Seasonal Forecast Model
2.3. Teleconnection Mechanisms and Dynamics
3. Results
3.1. Forecast Using SSTs over the Mediterranean Sea as Predictor
3.2. Forecast Using Niño 3.4 as Predictor
3.3. Physical Mechanisms
3.4. Case Studies
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turco, M.; Palazzi, E.; von Hardenberg, J.; Provenzale, A. Observed climate change hotspots. Geophys. Res. Lett. 2015, 42, 3521–3528. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the twenty-first century Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vischel, T.; Panthou, G.; Peyrillé, P.; Roehrig, R.; Quantin, G.; Lebel, T.; Wilcox, C.; Beucher, F.; Budiarti, M. Precipitation Extremes in the West African Sahel: Recent Evolution and Physical Mechanisms. In Tropical Extremes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 95–138. [Google Scholar] [CrossRef]
- Batterbury, S.; Warren, A. The African Sahel 25 years after the great drought: Assessing progress and moving towards new agendas and approaches. Glob. Environ. Chang. 2001, 11, 1–8. [Google Scholar] [CrossRef]
- Mortimore, M.J.; Adams, W.M. Farmer adaptation, change and ‘crisis’ in the Sahel. Glob. Environ. Chang. 2001, 11, 49–57. [Google Scholar] [CrossRef]
- Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 1986, 320, 602–607. [Google Scholar] [CrossRef]
- Rowell, D.P.; Folland, C.K.; Maskell, K.; Ward, M.N. Variability of summer rainfall over tropical North Africa (1906–92): Observations and modelling. Q. J. R. Meteor. Soc. 1995, 121, 669–704. [Google Scholar]
- Zeng, N.; Neelin, J.D.; Lau, K.M.; Tucker, C.J. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 1999, 286, 1537–1540. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.L.; Eltahir, E.A.B.; Foley, J.A.; Pollard, D.; Levis, S. Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere–biosphere model. Clim. Dyn. 2004, 22, 625–637. [Google Scholar] [CrossRef]
- Kucharski, F.; Zeng, N.; Kalnay, E. A further assessment of vegetation feedback on decadal Sahel rainfall variability. Clim. Dyn. 2013, 40, 1453–1466. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Janicot, S.; Harzallah, A.; Fontaine, B.; Moron, V. West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J. Clim. 1998, 11, 1874–1882. [Google Scholar] [CrossRef]
- Janicot, S.; Trzaska, S.; Poccard, I. Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim. Dyn. 2001, 18, 303–320. [Google Scholar] [CrossRef]
- Rowell, D.P. Teleconnections between the tropical Pacific and the Sahel. Q. J. R. Meteor. Soc. 2001, 127, 1683–1706. [Google Scholar] [CrossRef]
- Rowell, D.P. The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Clim. 2003, 16, 849–862. [Google Scholar] [CrossRef]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, A.; Saravanan, R.; Chang, P. Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Clim. Dyn. 2005, 25, 517–535. [Google Scholar] [CrossRef]
- Joly, M.; Voldoire, A. Influence of ENSO on the West African monsoon: Temporal aspects and atmospheric processes. J. Clim. 2009, 22, 3193–3210. [Google Scholar] [CrossRef]
- Joly, M.; Voldoire, A. Role of the Gulf of Guinea in the inter-annual variability of the West African monsoon: What do we learn from CMIP3 coupled simulations? Int. J. Clim. 2010, 30, 1843–1856. [Google Scholar] [CrossRef]
- Fontaine, B.; Garcia-Serrano, J.; Roucou, P.; Rodriguez-Fonseca, B.; Losada, T.; Chauvin, F.; Janicot, S. Impacts of warm and cold situations in the Mediterranean basins on the West African monsoon: Observed connection patterns (1979–2006) and climate simulations. Clim. Dyn. 2010, 35, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, M.; Fontaine, B.; Roucou, R.; Baldi, M. Influence of the Mediterranean Sea on the West African monsoon: Intraseasonal variability in numerical simulations. J. Geophys. Res. 2010, 115, D24115. [Google Scholar] [CrossRef] [Green Version]
- Losada, T.; Rodríguez-Fonseca, B.; Janicot, S.; Gervois, S.; Chauvin, F.; Ruti, P. A multi-model approach to the Atlantic Equatorial mode: Impact on the West African monsoon. Clim. Dyn. 2010, 35, 29–43. [Google Scholar] [CrossRef]
- Mohino, E.; Rodríguez-Fonseca, B.; Mechoso, C.R.; Gervois, S.; Ruti, P.; Chauvin, F. Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J. Clim. 2011, 24, 3878–3891. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Fonseca, B.; Janicot, S.; Mohino, E.; Losada, T.; Bader, J.; Caminade, C.; Voldoire, A. Interannual and decadal SST-forced responses of the West African monsoon. Atmos. Sci. Lett. 2011, 12, 67–74. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, B.; Mohino, E.; Mechoso, C.R.; Caminade, C.; Biasutti, M.; Gaetani, M.; García-Serrano, J.; Vizy, E.K.; Cook, K.; Xue, Y.; et al. Variability and Predictability of West African Droughts. A review on the role of Sea Surface Temperature Anomalies. J. Clim. 2015, 28, 4034–4060. [Google Scholar] [CrossRef]
- Suárez-Moreno, R.; Rodríguez-Fonseca, B.; Barroso, J.A.; Fink, A.H. Interdecadal changes in the leading ocean forcing of Sahelian rainfall interannual variability: Atmospheric dynamics and role of multidecadal SST background. J. Clim. 2018, 31, 6687–6710. [Google Scholar] [CrossRef]
- Wahl, S.; Latif, M.; Park, W.; Keenlyside, N. On the tropical Atlantic SST warm bias in the Kiel Climate Model. Clim. Dyn. 2011, 36, 891–906. [Google Scholar] [CrossRef] [Green Version]
- Mohino, E.; Rodríguez-Fonseca, B.; Mechoso, C.R.; Losada, T.; Polo, I. Relationships among Intermodel Spread and Biases in Tropical Atlantic Sea Surface Temperatures. J. Clim. 2019, 32, 3615–3635. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.; Wittenberg, A.T.; Masumoto, Y. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim. Dyn. 2012, 38, 985–1001. [Google Scholar] [CrossRef] [Green Version]
- Vannière, B.; Guilyardi, E.; Madec, G.; Doblas-Reyes, F.J.; Woolnough, S. Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim. Dyn. 2013, 40, 963–981. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, M.; Kumar, A.; Hu, Z.Z.; Wang, W. Predictions kill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Clim. 2013, 26, 5358–5378. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.P. On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn. 2008, 31, 587–598. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, P.; Richter, I.; Kim, W.; Tang, G. Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Clim. Dyn. 2014, 43, 3123–3145. [Google Scholar] [CrossRef]
- Gómara, I.; Mohino, E.; Losada, T.; Dominguez, M.; Suarez-Moreno, R.; Rodriguez-Fonseca, B. Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa. Clim. Dyn. 2018, 50, 4481–4506. [Google Scholar] [CrossRef]
- Steinig, S.; Harlaß, J.; Park, W.; Latif, M. Sahel rainfall strength and onset improvements due to more realistic Atlantic cold tongue development in a climate model. Sci. Rep. 2018, 8, 2569. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Moreno, R.; Rodríguez-Fonseca, B. S4CAST v2.0: Sea surface temperature based statistical seasonal forecast model. Geosci. Model Dev. 2015, 8, 3971–4018. [Google Scholar] [CrossRef]
- Diakhaté, M.; Rodriguez-Fonseca, B.; Gómara, I.; Mohino, E.; Dieng, A.L.; Gaye, A.T. Oceanic Forcing on Interannual Variability of Sahel Heavy and Moderate Daily Rainfall. J. Hydrometeorol. 2019. [Google Scholar] [CrossRef]
- Rowell, D.P. Simulating SST teleconnections to Africa: What is the state of the art? J. Clim. 2013, 26, 5397–5418. [Google Scholar] [CrossRef]
- Peyrillé, P.; Lafore, J.P.; Redelsperger, J.L. An idealized two-dimensional framework to study the West African monsoon. Part I: Validation and key controlling factors. J. Atmos. Sci. 2007, 64, 2765–2782. [Google Scholar]
- Fontaine, B.; Monerie, P.A.; GaetRoweani, M.; Roucou, P. Climate adjustments over the African-Indian monsoon regions accompanying Mediterranean Sea thermal variability. J. Geophys. Res. 2011, 116, D23122. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.R.; Thorncroft, C.D. The impact of the AMO on the West African monsoon annual cycle. Q. J. R. Meteorol. Soc. 2014, 140, 31–46. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. US Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar] [CrossRef]
- Funk, C.C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Reynolds, R.W. Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Clim. 2003, 16, 1495–1510. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Reynolds, R.W. Improved extended reconstruction of SST (1854–1997). J. Clim. 2004, 17, 2466–2477. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 1997, 10, 2147–2153. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef] [Green Version]
- Cherry, S. Singular value decomposition analysis and canonical correlation analysis. J. Clim. 1996, 9, 2003–2009. [Google Scholar] [CrossRef] [Green Version]
- Widmann, M. One-dimensional CCA and SVD, and their relationship to regression maps. J. Clim. 2005, 18, 2785–2792. [Google Scholar] [CrossRef]
- Dayan, H.; Vialard, J.; Izumo, T.; Lengaigne, M. Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim. Dyn. 2014, 43, 1311–1325. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Juggins, S. Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 1993, 269–270, 485–502. [Google Scholar] [CrossRef]
- Birks, H.J.B. The use of pollen analysis in the reconstruction of past climates: A review. In Climate and History: Studies in Past Climates and Their Impact on Man; Wigley, T.M.L., Ingram, M.J., Farmer, G., Eds.; Cambridge University Press: Cambridge, UK, 1981; pp. 111–138. [Google Scholar]
- Wang, B.; Xiang, B.; Li, J.; Webster, P.J.; Rajeevan, M.N.; Liu, J.; Ha, K.J. Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat. Commun. 2015, 6, 7154. [Google Scholar] [CrossRef] [PubMed]
- Dee, D.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Con-figuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- LeCompte, D.; Tinker, R.; Dionne, J.; Halpert, M.; Thiaw, W. Wettest Rainy Season in 30 Years across African Sahel; Special Climate Summary 94/2; NOAA: Washington, DC, USA, 1994; Available from the Climate Prediction Center Website. Available online: https://www.cpc.ncep.noaa.gov/products/assessments/assess_94/sahel.html (accessed on 9 April 2020).
- Nicholson, S.; Ba, M.; Kim, Y.J. Rainfall in the Sahel during 1994. J. Clim. 1996, 9, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diakhaté, M.; Suárez-Moreno, R.; Gómara, I.; Mohino, E. Statistical-Observational Analysis of Skillful Oceanic Predictors of Heavy Daily Precipitation Events in the Sahel. Atmosphere 2020, 11, 584. https://doi.org/10.3390/atmos11060584
Diakhaté M, Suárez-Moreno R, Gómara I, Mohino E. Statistical-Observational Analysis of Skillful Oceanic Predictors of Heavy Daily Precipitation Events in the Sahel. Atmosphere. 2020; 11(6):584. https://doi.org/10.3390/atmos11060584
Chicago/Turabian StyleDiakhaté, Moussa, Roberto Suárez-Moreno, Iñigo Gómara, and Elsa Mohino. 2020. "Statistical-Observational Analysis of Skillful Oceanic Predictors of Heavy Daily Precipitation Events in the Sahel" Atmosphere 11, no. 6: 584. https://doi.org/10.3390/atmos11060584
APA StyleDiakhaté, M., Suárez-Moreno, R., Gómara, I., & Mohino, E. (2020). Statistical-Observational Analysis of Skillful Oceanic Predictors of Heavy Daily Precipitation Events in the Sahel. Atmosphere, 11(6), 584. https://doi.org/10.3390/atmos11060584