Nanoparticle Number Concentration in the Air in Relation to the Time of the Year and Time of the Day
Abstract
:1. Introduction
2. Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Ambient Air Pollution-a Major Threat to Health and Climate; World Health Organization: Copenhagen, Denmark, 2018. [Google Scholar]
- Loxham, M.; Davies, D.E.; Holgate, S.T. The health effects of fine particulate air pollution. BMJ 2019. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Kumar, M.; Singh, N. Aerosol, Climate, and Sustainability. Encyclopedia of the Anthropocene; Elsevier: Oxford, UK, 2018; pp. 419–442. ISBN 9780128135761. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Shen, S.; Sioutas, C. Seasonal Trends of Concentration and Size Distribution of Ultrafine Particles Near Major Highways in Los Angeles Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Sci. Technol. 2004, 38 (Suppl. 1), 5–13. [Google Scholar] [CrossRef]
- Baldauf, R.W.; Devlin, R.B.; Gehr, P.; Giannelli, R.; Hassett-Sipple, B.; Jung, H.; Narubum, G.; McDonald, J.; Sacks, J.D.; Walker, K. Ultrafine Particle Metrics and Research Considerations: Review of the 2015 UFP Workshop. Int. J. Environ. Res. Public Health 2016, 13, 1054. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Nalwa, H.S. (Eds.) Nanotoxicology: Interactions of Nanomaterials with Biological Systems; American Scientific Publishers: Los Angeles, CA, USA, 2007. [Google Scholar]
- Chen, L.Q.; Fang, L.; Ling, J.; Ding, C.Z.; Kang, B.; Huang, C.Z. Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol. 2015, 28, 501–509. [Google Scholar] [CrossRef]
- Gehrig, R.; Brigitte, B. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos. Environ. 2003, 37, 2571–2580. [Google Scholar] [CrossRef]
- Li, J.; Chen, B.; de la Campa, A.M.S.; Alastuey, A.; Querol, X.; Jesus, D. 2005–2014 trends of PM10 source contributions in an industrialized area of southern Spain. Environ. Pollut. 2018, 236, 570–579. [Google Scholar] [CrossRef]
- Bartzis, J.G.; Kalimeri, K.K.; Sakellaris, I.A. Environmental data treatment to support exposure studies: The statistical behavior for NO2, O3, PM10 and PM2.5 air concentrations in Europe. Environ. Res. 2020, 181. [Google Scholar] [CrossRef]
- Samek, L.; Stegowski, Z.; Styszko, K.; Furman, L.; Fiedor, J. Seasonal contribution of assessed sources to submicron and fine particulate matter in a Central European urban area. Environ. Pollut. 2018, 241, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Křůmal, K.; Mikuška, P.; Vojtěšek, M.; Večeřa, Z. Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas. Atmos. Environ. 2010, 44, 5148–5155. [Google Scholar] [CrossRef]
- Asimakopoulos, D.N.; Maggos, T.; Assimakopoulos, V.D.; Bougiatioti, A.; Bairachtari, K.; Vasilakos, C.; Mihalopoulos, N. Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area. Chemosphere 2020, 241. [Google Scholar] [CrossRef]
- Vecchi, R.; Marcazzan, G.; Valli, G.; Ceriani, M.; Antoniazzi, C. The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 2004, 38, 4437–4446. [Google Scholar] [CrossRef]
- Samek, L.; Furman, L.; Mikrut, M.; Regiel-Futyra, A.; Macyk, W.; Stochel, G.; van Eldik, R. Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project. Chemosphere 2017, 187, 430–439. [Google Scholar] [CrossRef]
- Gugamsetty, B.; Wei, H.; Liu, C.N.; Awasthi, A.; Hsu, S.C.; Tsai, C.J.; Roam, G.D.; Wu, Y.C.; Chen, C.F. Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization. Aerosol Air Qual. Res. 2012, 12, 476–491. [Google Scholar] [CrossRef]
- Carbone, C.; Decesari, S.; Paglione, M.; Giulianelli, L.; Rinaldi, M.; Marinoni, A.; Cristofanelli, P.; Didiodato, A.; Bonasoni, P.; Fuzzi, S.; et al. 3-year chemical composition of free tropospheric PM1 at the Mt. Cimone GAW global station—South Europe—2165 m a.s.l. Atmos. Environ. 2014, 87, 218–227. [Google Scholar] [CrossRef]
- Spindler, G.; Grüner, A.; Müller, K.; Schlimper, S.; Herrmann, H. Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz—Influence of air mass inflow, weather conditions and season. J. Atmos. Chem. 2013, 70, 165–195. [Google Scholar] [CrossRef]
- Pitz, M.; Kreyling, W.G.; Hölscher, B.; Cyrys, J.; Wichmann, H.E.; Heinrich, J. Change of the ambient particle size distribution in East Germany between 1993 and 1999. Atmos. Environ. 2001, 35, 4357–4366. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B.; Shen, Y.; Yu, Y.; Liu, H.; Zhao, Z.; Zhang, L. Seasonal properties on PM1 and PGEs (Rh, Pd, and Pt) in PM1. Atmos. Pollut. Res. 2018, 9, 1032–1037. [Google Scholar] [CrossRef]
- Titos, G.; Lyamani, H.; Pandolfi, M.; Alastuey, A.; Alados-Arboledas, L. Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment. Atmos. Environ. 2014, 89, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Shen, Z.; Zhu, C.; Yue, J.; Cao, J.; Liu, S.; Zhu, L.; Zhang, R. Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmos. Res. 2012, 118, 222–231. [Google Scholar] [CrossRef]
- Pinto, J.A.; Kumar, P.; Alonso, M.F.; Andreão, W.L.; Pedruzzi, R.; dos Santos, F.S.; Moreira, D.M.; de Almeida Albuquerque, T.T. Traffic data in air quality modeling: A review of key variables, improvements in results, open problems and challenges in current research. Atmos. Pollut. Res. 2020, 11, 454–468. [Google Scholar] [CrossRef]
- Hu, D.; Wu, J.; Tian, K.; Liao, L.; Xu, M.; Du, Y. Urban air quality, meteorology and traffic linkages: Evidence from a sixteen-day particulate matter pollution event in December 2015, Beijing. J. Environ. Sci. 2017, 59, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Dėdelė, A.; Miškinytė, A. Seasonal and site-specific variation in particulate matter pollution in Lithuania. Atmos. Pollut. Res. 2019, 10, 768–775. [Google Scholar] [CrossRef]
- Kamińska, J.A. The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław. J. Environ. Manag. 2018, 217, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Laña, I.; Del Ser, J.; Padró, A.; Vélez, M.; Casanova-Mateo, C. The role of local urban traffic and meteorological conditions in air pollution: A data-based case study in Madrid, Spain. Atmos. Environ. 2016, 145, 424–438. [Google Scholar] [CrossRef]
- Google Maps Steetview. (28.4.2020). Ústí nad Labem. Available online: https://goo.gl/maps/inqx7S1vjV94w1DdA (accessed on 18 May 2020).
- Seznam. Mapy.cz. (28.4.2020). Ústí nad Labem. Available online: https://en.mapy.cz/s/kubonunano (accessed on 18 May 2020).
- Ramsey, N.R.; Klein, P.M.; Moore, B., III. The impact of meteorological parameters on urban air quality. Atmos. Environ. 2014, 86, 58–67. [Google Scholar] [CrossRef]
- Fisher, B. Meteorological factors influencing the occurrence of air pollution episodes involving chimney plumes. Meteorol. Appl. 2002, 9, 199–210. [Google Scholar] [CrossRef]
- Radaideh, J.A. Effect of Meteorological Variables on Air Pollutants Variation in Arid Climates. J. Environ. Anal. Toxicol. 2017, 7. [Google Scholar] [CrossRef]
- Triantafyllou, E.; Diapouli, E.; Korras-Carraca, Μ.Β.; Manousakas, M.; Psanis, C.; Floutsi, A.A.; Spyrou, C.; Eleftheriadis, K.; Biskos, G. Contribution of locally-produced and transported air pollution to particulate matter in a small insular coastal city. Atmos. Pollut. Res. 2020, 11, 667–678. [Google Scholar] [CrossRef]
- Zhang, L.; Ninomiya, Y.; Yamashita, T. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel 2006, 85, 1446–1457. [Google Scholar] [CrossRef]
- Weilenmann, M.; Favez, J.Y.; Alvarez, R. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmos. Environ. 2009, 43, 2419–2429. [Google Scholar] [CrossRef]
- Keramat, A.; Marivani, B.; Samsami, M. Climatic Change, Drought and Dust Crisis in Iran. World Academy of Science. Environ. Eng. 2011, 6, 10–13. [Google Scholar] [CrossRef]
- Zhu, Y.; Kuhn, T.; Mayo, P.; Hinds, W.C.; HINDS. Comparison of Daytime and Nighttime Concentration Profiles and Size Distributions of Ultrafine Particles near a Major Highway. Environ. Sci. Technol. 2006, 40, 2531–2536. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Kittelson, D.B.; Watts, W.F. Single-Stage Dilution Tunnel Performance. SAE Transaction: Warrendale, PA, USA, 2001. [Google Scholar] [CrossRef]
- Kittelson, D.; Johnson, J.; Watts, W.; Wei, Q.; Drayton, M.; Paulsen, D.; Bukowiecki, N. Diesel Aerosol Sampling in the Atmosphere. In SAE Transactions Journal of Fuels and Lub ricants; SAE Paper No. 2000-01-2212; SAE: Warrendale, PA, USA, 2000. [Google Scholar]
- Pérez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M. Variability of Particle Number, Black Carbon, and PM 10, PM 2.5, and PM 1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Sci. Technol. 2010, 44, 487–499. [Google Scholar] [CrossRef]
- Jamriska, M.; Morawska, L.; Mergersen, K. The effect of temperature and humidity on size segregated traffic exhaust particle emissions. Atmos. Environ. 2008, 42, 2369–2382. [Google Scholar] [CrossRef] [Green Version]
Basic Characterization | |
---|---|
Station ID | UULD |
Name | Ústí nad Labem – Všebořická (hot spot) |
Country | Czech Republic |
Region | Ústecký |
District | Ústí nad Labem |
Classification | |
Abbreviation | T/U/RC |
EOI – station type | traffic (T) |
EOI – zone type | urban (U) |
EOI B/R – zone characteristic | Residential, commercial (RC) |
Location | |
Geographic co-ordinates | 50°40′59.248″ N 13°59′52.344″ E |
Elevation | 230 m |
Further Details | |
Terrain | Flat |
Landscape | Multistory housing development |
Representativeness | 100–500 m |
Measurement Range (Size) | 0.18–100 µm (3 Measuring Ranges) |
---|---|
Size channels | 64 (32/decade) |
Measuring principle | Optical light-scattering |
Measurement range (number CN) | 0–20,000 particles/cm3 |
Time resolution | 1 s - 24 h, 15 min in type approved operation |
Volume flow | 4.8 L/min ≙ 0.3 m3/h |
Data acquisition | Digital, 20 MHz processor, 256 raw data channels |
Power consumption | Approx. 200 W |
User interface | Touchscreen, 800 × 480 Pixel, 7” |
Power supply | 115–230 V, 50–60 Hz |
Housing | Table housing, optionally with mounting brackets for rack-mounting |
Dimensions | 450 × 320 × 180.5 mm (H × W × D), 19” |
Software | PDAnalyze Fidas® |
Aerosol conditioning | Thermal with IADS |
Measurement range (mass) | 0–10,000 µg/m3 |
Reported data | PM1, PM2.5, PM4, PM10, TSP, CN, particle size distribution, pressure, temperature, humidity |
Sampling head | Sigma-2 |
Fraction (nm) | Fraction (nm) | Fraction (nm) | Fraction (nm) |
---|---|---|---|
184–198 | 583–627 | 2130–2289 | 7239–7779 |
198–213 | 627–674 | 2289–2460 | 7779–8359 |
213–229 | 674–724 | 2460–2643 | 8359–8983 |
229–246 | 724–778 | 2643–2841 | 8983–9653 |
246–264 | 778–836 | 2841–3053 | 9653–10,373 |
164–284 | 836–898 | 3053–3280 | 10,373–11,147 |
284–305 | 898–965 | 3280–3525 | 11,147–11,979 |
305–328 | 965–1037 | 3525–3788 | 11,979–12,872 |
328–352 | 1037–1198 | 3788–4071 | 12,872–13,833 |
352–379 | 1198–1383 | 4071–4374 | 13,833–14,865 |
379–407 | 1383–1486 | 4374–4701 | 14,865–15,974 |
407–437 | 1486–1597 | 4701–5051 | 15,974–17,165 |
437–470 | 1597–1717 | 5051–5833 | >17,165 |
470–505 | 1717–1845 | 5833–6268 | |
505–543 | 1845–1982 | 6268–6736 | |
543–583 | 1982–2130 | 6736–7239 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzezina, J.; Köbölová, K.; Adamec, V. Nanoparticle Number Concentration in the Air in Relation to the Time of the Year and Time of the Day. Atmosphere 2020, 11, 523. https://doi.org/10.3390/atmos11050523
Brzezina J, Köbölová K, Adamec V. Nanoparticle Number Concentration in the Air in Relation to the Time of the Year and Time of the Day. Atmosphere. 2020; 11(5):523. https://doi.org/10.3390/atmos11050523
Chicago/Turabian StyleBrzezina, Jáchym, Klaudia Köbölová, and Vladimír Adamec. 2020. "Nanoparticle Number Concentration in the Air in Relation to the Time of the Year and Time of the Day" Atmosphere 11, no. 5: 523. https://doi.org/10.3390/atmos11050523
APA StyleBrzezina, J., Köbölová, K., & Adamec, V. (2020). Nanoparticle Number Concentration in the Air in Relation to the Time of the Year and Time of the Day. Atmosphere, 11(5), 523. https://doi.org/10.3390/atmos11050523