Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization
Abstract
:1. Introduction
2. Methodology
2.1. Artificial Neural Network (ANN)
2.2. Recurrent Neural Network (RNN)
2.3. Long Short-Term Memory (LSTM)
2.4. Genetic Algorithm (GA)
- Generate an initial population of a collection of random chromosomes.
- Use the objective function to assess the fitness of chromosomes.
- Implement crossover and mutation to chromosomes according to their fitness.
- Generate a new population
- Repeats step ii–iv until the stopping requirements have been met.
3. Data Description
4. Application Methodology
5. Results
5.1. Data Stationarity Check
5.2. Model Performance
5.2.1. One-Day-Ahead Prediction
5.2.2. Multi-Day-Ahead Prediction
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sekula, P.; Bokwa, A.; Bochenek, B.; Zimnoch, M. Prediction of air temperature in the Polish Western Carpathian Mountains with the ALADIN-HIRLAM numerical weather prediction system. Atmosphere 2019, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Frnda, J.; Durica, M.; Nedoma, J.; Zabka, S.; Martinek, R.; Kostelansky, M. A weather forecast model accuracy analysis and ecmwf enhancement proposal by neural network. Sensors 2019, 19, 5144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahimi Nezhad, E.; Fallah Ghalhari, G.; Bayatani, F. Forecasting Maximum Seasonal Temperature Using Artificial Neural Networks “Tehran Case Study”. Asia Pac. J. Atmos. Sci. 2019, 55, 145–153. [Google Scholar] [CrossRef]
- Nayak, D.R.; Mahapatra, A.; Mishra, P. A Survey on Rainfall Prediction using Artificial Neural Network. Int. J. Comput. Appl. 2013, 72, 32–40. [Google Scholar]
- Hassan, Z.; Shamsudin, S.; Harun, S.; Malek, M.A.; Hamidon, N. Suitability of ANN applied as a hydrological model coupled with statistical downscaling model: A case study in the northern area of Peninsular Malaysia. Environ. Earth Sci. 2015, 74, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.N.K.; Hu, Y.; You, J.J.; Chan, P.W. Deep neural network based feature representation for weather forecasting. In Proceedings of the International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, 21–24 July 2014. [Google Scholar]
- Schoof, J.T.; Pryor, S.C. Geography and Environmental Resources Downscaling Temperature and Precipitation: A Comparison of Regression-Based Methods and Artificial Neural Networks Comparison of Regresssion-Based Methods and Artificial. Int. J. Climatol. 2001, 21, 773–790. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Ewing, B.T.; Thompson, M.A. Forecasting wind speed with recurrent neural networks. Eur. J. Oper. Res. 2012, 221, 148–154. [Google Scholar] [CrossRef]
- Torres, J.L.; García, A.; De Blas, M.; De Francisco, A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [Google Scholar] [CrossRef]
- Agrawal, K. Modelling and prediction of rainfall using artificial neural network and ARIMA techniques. J. Ind. Geophys. Union 2006, 10, 141–151. [Google Scholar]
- Ustaoglu, B.; Cigizoglu, H.K.; Karaca, M. Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorol. Appl. 2008, 15, 431–445. [Google Scholar] [CrossRef]
- Altunkaynak, A. Forecasting surface water level fluctuations of lake van by artificial neural networks. Water Resour. Manag. 2007, 21, 399–408. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, F. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367, 125–137. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Zeng, Y.R.; Chang, Y.S. Air pollution forecasting using rnn with lstm. In Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, Athens, Greece, 12–15 August 2018; pp. 1068–1073. [Google Scholar]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Salman, A.G.; Heryadi, Y.; Abdurahman, E.; Suparta, W. Single Layer & Multi-layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting. Procedia Comput. Sci. 2018, 135, 89–98. [Google Scholar] [CrossRef]
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Hung, N.Q.; Babel, M.S.; Weesakul, S.; Tripathi, N.K. Hydrology and Earth System Sciences An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 2009, 13, 1413–1416. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Smith, B.A.; Mcclendon, R.W.; Hoogenboom, G. Improving Air Temperature Prediction with Artificial Neural Networks. Int. J. Comput. Inf. Eng. 2007, 3, 179–186. [Google Scholar]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, G.P. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 2001, 132, 666–680. [Google Scholar] [CrossRef]
- Lemke, C.; Gabrys, B. Meta-learning for time series forecasting and forecast combination. Neurocomputing 2010, 73, 2006–2016. [Google Scholar] [CrossRef] [Green Version]
- Kordík, P.; Koutník, J.; Drchal, J.; Kovářík, O.; Čepek, M.; Šnorek, M. Meta-learning approach to neural network optimization. Neural Netw. 2010, 23, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Shin, K.S. Genetic algorithm-optimized long short-term memory network for stock market prediction. Sustainability 2018, 10, 3765. [Google Scholar] [CrossRef] [Green Version]
- Kolhe, M.; Lin, T.C.; Maunuksela, J. GA-ANN for short-term wind energy prediction. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, wuhan, China, 25–28 March 2011. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-Term Memory. Neural Comput. 1997, 1780, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.; Pirayesh, J.; Farzin, S.; Malekani, L.; Moradinasab, S.; Kisi, O. Application of heuristic algorithms in improving performance of soft computing models for prediction of min, mean and max air temperatures. Eng. J. 2019, 23, 83–98. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, J. Journal of geophysical research. Nature 1955, 175, 238. [Google Scholar]
- Ratnam, J.V.; Dijkstra, H.A.; Doi, T.; Morioka, Y.; Nonaka, M.; Behera, S.K. Improving seasonal forecasts of air temperature using a genetic algorithm. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Anokye, M.; Kwame, A.; Munyakazi, L. Modeling and Forecasting Rainfall Pattern in Ghana as a Seasonal Arima Process: The Case of Ashanti Region. Int. J. Humanit. Soc. Sci. 2013, 3, 224–233. [Google Scholar]
- Van Rossum, G. Python Tutorial; CWI (Centre for Mathematics and Computer Science): Amsterdam, The Netherlands, 1995. [Google Scholar]
- Chollet, F. Keras Documentation. Available online: https://keras.io/ (accessed on 4 May 2020).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 99–104. [Google Scholar] [CrossRef]
- Fortin, F.-A.; De Rainville, F.-M.; Gardner, M.-A.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy François-Michel De Rainville. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar]
- Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D. Modeling ambient air temperature time series using neural networks. J. Geophys. Res. Atmos. 1998, 103, 19509–19517. [Google Scholar] [CrossRef]
t-Statistic | |||||
---|---|---|---|---|---|
ADF Test | Significant Level | Winter | Spring | Summer | Autumn |
ADF statistic | −12.74550 | −12.82992 | −12.11340 | −12.80105 | |
Test critical values | 1% level | −3.43221 | −3.43214 | −3.43213 | −3.43216 |
5% level | −2.86236 | −2.86233 | −2.86232 | −2.86234 | |
10% level | −2.56720 | −2.56719 | −2.56718 | −2.56719 |
Model | No. of Hidden Layer | No. of Hidden Units | No. of Epochs | Lag | RMSE (°C) | MAE (°C) | R2 |
---|---|---|---|---|---|---|---|
ANN | 1 | (8) | 161 | 7 | 2.981 | 2.348 | 0.577 |
2 | (4, 16) | 193 | 7 | 3.009 | 2.374 | 0.570 | |
3 | (3, 10, 12) | 285 | 7 | 3.018 | 2.373 | 0.567 | |
RNN | 1 | (11) | 50 | 7 | 2.985 | 2.351 | 0.576 |
2 | (4, 5) | 263 | 7 | 3.021 | 2.393 | 0.566 | |
3 | (5, 7, 3) | 92 | 7 | 3.011 | 2.366 | 0.569 | |
LSTM | 1 | (10) | 20 | 7 | 2.991 | 2.354 | 0.575 |
2 | (12, 4) | 91 | 7 | 3.010 | 2.373 | 0.569 | |
3 | (11, 11, 1) | 98 | 7 | 3.016 | 2.375 | 0.567 |
Model | No. of Hidden Layer | No. of Hidden Units | No. of Epochs | Lag | RMSE (°C) | MAE (°C) | R2 |
---|---|---|---|---|---|---|---|
ANN | 1 | (2) | 268 | 7 | 3.597 | 2.919 | 0.694 |
2 | (4, 16) | 263 | 7 | 3.621 | 2.950 | 0.690 | |
3 | (14, 8, 17) | 100 | 7 | 3.637 | 2.955 | 0.687 | |
RNN | 1 | (5) | 104 | 7 | 3.591 | 2.918 | 0.695 |
2 | (1, 10) | 156 | 7 | 3.624 | 2.954 | 0.690 | |
3 | (4, 4, 7) | 204 | 7 | 3.647 | 2.972 | 0.686 | |
LSTM | 1 | (3) | 273 | 7 | 3.590 | 2.922 | 0.695 |
2 | (3, 20) | 285 | 7 | 3.622 | 2.940 | 0.690 | |
3 | (6, 11, 18) | 280 | 7 | 3.646 | 2.949 | 0.686 |
Model | No. of Hidden Layer | No. of Hidden Units | No. of Epochs | Lag | RMSE (°C) | MAE (°C) | R2 |
---|---|---|---|---|---|---|---|
ANN | 1 | (2) | 268 | 7 | 2.404 | 1.904 | 0.269 |
2 | (6, 5) | 263 | 7 | 2.433 | 1.913 | 0.251 | |
3 | (11, 11, 2) | 288 | 7 | 2.425 | 1.917 | 0.256 | |
RNN | 1 | (8) | 50 | 7 | 2.397 | 1.901 | 0.273 |
2 | (6, 13) | 156 | 7 | 2.432 | 1.931 | 0.252 | |
3 | (1, 10, 12) | 156 | 7 | 2.442 | 1.945 | 0.245 | |
LSTM | 1 | (3) | 25 | 7 | 2.396 | 1.909 | 0.273 |
2 | (6, 6) | 91 | 7 | 2.422 | 1.928 | 0.258 | |
3 | (1, 19, 17) | 156 | 7 | 2.429 | 1.945 | 0.253 |
Model | No. of Hidden Layer | No. of Hidden Units | No. of Epochs | Lag | RMSE (°C) | MAE (°C) | R2 |
---|---|---|---|---|---|---|---|
ANN | 1 | (6) | 104 | 7 | 2.668 | 2.116 | 0.839 |
2 | (18, 2) | 95 | 7 | 2.689 | 2.152 | 0.837 | |
3 | (7, 10, 18) | 210 | 7 | 2.699 | 2.137 | 0.836 | |
RNN | 1 | (3) | 292 | 7 | 2.661 | 2.093 | 0.840 |
2 | (17, 9) | 123 | 7 | 2.690 | 2.115 | 0.837 | |
3 | (14, 3, 17) | 92 | 7 | 2.687 | 2.109 | 0.837 | |
LSTM | 1 | (14) | 105 | 7 | 2.662 | 2.112 | 0.840 |
2 | (15, 2) | 229 | 7 | 2.683 | 2.138 | 0.838 | |
3 | (12, 7, 4) | 111 | 7 | 2.671 | 2.131 | 0.839 |
Time | Winter | Spring | Summer | Autumn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ANN | RNN | LSTM | ANN | RNN | LSTM | ANN | RNN | LSTM | ANN | RNN | LSTM | |
Lead-1 | 2.948 | 2.920 | 2.936 | 3.467 | 3.425 | 3.402 | 2.367 | 2.355 | 2.385 | 2.732 | 2.660 | 2.620 |
Lead-2 | 3.449 | 3.403 | 3.403 | 3.757 | 3.710 | 3.665 | 2.492 | 2.478 | 2.469 | 3.075 | 2.992 | 2.958 |
Lead-3 | 3.703 | 3.653 | 3.656 | 3.880 | 3.835 | 3.777 | 2.566 | 2.547 | 2.519 | 3.233 | 3.163 | 3.138 |
Lead-4 | 3.858 | 3.812 | 3.818 | 3.936 | 3.899 | 3.836 | 2.626 | 2.599 | 2.558 | 3.299 | 3.252 | 3.236 |
Lead-5 | 3.957 | 3.913 | 3.929 | 3.969 | 3.933 | 3.871 | 2.677 | 2.638 | 2.586 | 3.332 | 3.304 | 3.294 |
Lead-6 | 4.019 | 3.974 | 4.003 | 3.989 | 3.953 | 3.898 | 2.719 | 2.670 | 2.608 | 3.354 | 3.335 | 3.331 |
Lead-7 | 4.059 | 4.009 | 4.049 | 4.004 | 3.967 | 3.918 | 2.756 | 2.694 | 2.625 | 3.372 | 3.361 | 3.362 |
Lead-8 | 4.077 | 4.025 | 4.069 | 4.014 | 3.976 | 3.932 | 2.792 | 2.716 | 2.640 | 3.388 | 3.381 | 3.385 |
Lead-9 | 4.080 | 4.029 | 4.073 | 4.021 | 3.980 | 3.941 | 2.823 | 2.733 | 2.650 | 3.406 | 3.400 | 3.406 |
Lead-10 | 4.070 | 4.016 | 4.062 | 4.028 | 3.983 | 3.952 | 2.851 | 2.744 | 2.658 | 3.422 | 3.417 | 3.426 |
Lead-11 | 4.064 | 4.004 | 4.051 | 4.033 | 3.987 | 3.959 | 2.882 | 2.759 | 2.671 | 3.430 | 3.426 | 3.438 |
Lead-12 | 4.066 | 3.999 | 4.048 | 4.040 | 3.991 | 3.965 | 2.916 | 2.775 | 2.686 | 3.438 | 3.431 | 3.445 |
Lead-13 | 4.070 | 4.001 | 4.050 | 4.044 | 3.993 | 3.968 | 2.949 | 2.794 | 2.699 | 3.446 | 3.431 | 3.446 |
Lead-14 | 4.062 | 3.999 | 4.044 | 4.046 | 3.994 | 3.971 | 2.983 | 2.810 | 2.712 | 3.458 | 3.434 | 3.448 |
Lead-15 | 4.061 | 3.999 | 4.040 | 4.049 | 3.997 | 3.979 | 3.014 | 2.822 | 2.719 | 3.469 | 3.438 | 3.450 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thi Kieu Tran, T.; Lee, T.; Shin, J.-Y.; Kim, J.-S.; Kamruzzaman, M. Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization. Atmosphere 2020, 11, 487. https://doi.org/10.3390/atmos11050487
Thi Kieu Tran T, Lee T, Shin J-Y, Kim J-S, Kamruzzaman M. Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization. Atmosphere. 2020; 11(5):487. https://doi.org/10.3390/atmos11050487
Chicago/Turabian StyleThi Kieu Tran, Trang, Taesam Lee, Ju-Young Shin, Jong-Suk Kim, and Mohamad Kamruzzaman. 2020. "Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization" Atmosphere 11, no. 5: 487. https://doi.org/10.3390/atmos11050487
APA StyleThi Kieu Tran, T., Lee, T., Shin, J. -Y., Kim, J. -S., & Kamruzzaman, M. (2020). Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization. Atmosphere, 11(5), 487. https://doi.org/10.3390/atmos11050487