Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment
Abstract
:1. Introduction
2. State of the Art
2.1. Bioaerosol
2.2. Composting
2.3. Biomethanization
2.4. Risk Assessment in OWTPs
3. Methods and Qualitative Systematic Research
4. Results and Discussion
4.1. Sampling and Extraction Method
4.2. Analytical Methods
4.3. Risk Assessment
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robertson, S.; Douglas, P.; Jarvis, D.; Marczylo, E. Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. Int. J. Hyg. Environ. Health 2019, 222, 364–386. [Google Scholar] [PubMed]
- Council Directive 1999/31/EC on the Landfill. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31999L0031 (accessed on 28 April 2020).
- European Environment Agency. Waste Prevention in Europe: Policies, Status and Trends in 2017; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [Green Version]
- ISPRA. Municipal Waste Report—313/2019; ISPRA: Rome, Italy, 2019; Volume 313, ISBN 978-88-448-0971-3. [Google Scholar]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and Health Outcomes in Relation to Bioaerosol Emissions From Composting Facilities: A Systematic Review of Occupational and Community Studies. J. Toxicol. Environ. Heal. Part. B 2015, 18, 43–69. [Google Scholar]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar]
- Ferguson, R.M.W.; Garcia-Alcega, S.; Coulon, F.; Dumbrell, A.J.; Whitby, C.; Colbeck, I. Bioaerosol biomonitoring: Sampling optimization for molecular microbial ecology. Mol. Ecol. Resour. 2019, 19, 672–690. [Google Scholar] [CrossRef]
- Lal, A.; Akhtar, J.; Pinto, S.; Grewal, H.; Martin, K. Recurrent Pulmonary Embolism and Hypersensitivity Pneumonitis Secondary to Aspergillus, in a Compost Plant Worker: Case Report and Review of Literature. Lung 2018, 196, 553–560. [Google Scholar]
- Duquenne, P. On the identification of culturable microorganisms for the assessment of biodiversity in bioaerosols. Ann. Work Expo. Heal. 2018, 62, 139–146. [Google Scholar]
- Douglas, P.; Hayes, E.T.; Williams, W.B.; Tyrrel, S.F.; Kinnersley, R.P.; Walsh, K.; O’Driscoll, M.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H. Use of dispersion modelling for Environmental Impact Assessment of biological air pollution from composting: Progress, problems and prospects. Waste Manag. 2017, 70, 22–29. [Google Scholar]
- Kozajda, A.; Jeżak, K.; Kapsa, A. Airborne Staphylococcus aureus in different environments—A review. Environ. Sci. Pollut. Res. 2019, 26, 34741–34753. [Google Scholar]
- Polus, M.; Mucha, Z. Microbiological hazards in closed facilities at sewage treatment plants. Arch. Environ. Prot. 2019, 45, 58–65. [Google Scholar]
- Kim, K.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar]
- Wéry, N. Bioaerosols from composting facilities—A review. Front. Cell. Infect. Microbiol. 2014, 4, 1–9. [Google Scholar]
- Steger, K.; Sjögren, Å.M.; Jarvis, Å.; Jansson, J.K.; Sundh, I. Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J. Appl. Microbiol. 2007, 103, 487–498. [Google Scholar] [PubMed]
- Williams, B.; Douglas, P.; Roca Barcelo, A.; Hansell, A.L.; Hayes, E. Estimating Aspergillus fumigatus exposure from outdoor composting activities in England between 2005 and 2014. Waste Manag. 2019, 84, 235–244. [Google Scholar] [PubMed]
- Le Goff, O.; Godon, J.J.; Milferstedt, K.; Bacheley, H.; Steyer, J.P.; Wéry, N. A new combination of microbial indicators for monitoring composting bioaerosols. Atmos. Environ. 2012, 61, 428–433. [Google Scholar]
- Gutarowska, B.; Skóra, J.; Stępień, Ł.; Szponar, B.; Otlewska, A.; Pielech-Przybylska, K. Assessment of microbial contamination within working environments of different types of composting plants. J. Air Waste Manag. Assoc. 2014, 65, 466–478. [Google Scholar]
- Resende, J.A.; Silva, V.L.; de Oliveira, T.L.R.; de Oliveira Fortunato, S.; da Costa Carneiro, J.; Otenio, M.H.; Diniz, C.G. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresour. Technol. 2014, 153, 284–291. [Google Scholar] [CrossRef] [Green Version]
- United Nations. The Sustainable Development Goals; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Barrena Gómez, R.; Vázquez Lima, F.; Sánchez Ferrer, A. The use of respiration indices in the composting process: A review. Waste Manag. Res. 2006, 24, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Ocaña, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.F.; Hoyos, L.V.; Gonzales, S.; Barrena, R.; Komilis, D.; Sanchez, A. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices. Waste Manag. 2015, 44, 63–71. [Google Scholar]
- Juárez, M.F.; Prähauser, B.; Walter, A.; Insam, H.; Franke-Whittle, I.H. Co-composting of biowaste and wood ash, influence on a microbially driven-process. Waste Manag. 2015, 46, 155–164. [Google Scholar] [CrossRef]
- Kumar, S. Composting of municipal solid waste. Crit. Rev. Biotechnol. 2011, 31, 112–136. [Google Scholar] [PubMed]
- Li, Z.; Lu, H.; Ren, L.; He, L. Experimental and modeling approaches for food waste composting: A review. Chemosphere 2013, 93, 1247–1257. [Google Scholar] [PubMed]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.; López, M.J.; Suárez-Estrella, F.; Vargas-García, M.C.; López-González, J.A.; Moreno, J. Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresour. Technol. 2014, 162, 283–293. [Google Scholar] [CrossRef]
- Insam, H.; de Bertoldi, M. Microbiology of the Composting Process. In Compost Science and Technology; Elsevier Waste Management Series 8; Elsevier: Amsterdam, The Netherlands, 2007; pp. 32–34. [Google Scholar]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef]
- ANPA (Agenzia Nazionale per la Protezione dell’Ambiente). Il Recupero di Sostanza Organica dai Rifiuti per la Produzione di Ammendanti di Qualità; ANPA: Rome, Italy, 2002; Volume 7. [Google Scholar]
- Betelli, L.; Duquenne, P.; Grenouillet, F.; Simon, X.; Scherer, E.; Géhin, E.; Hartmann, A. Development and evaluation of a method for the quantification of airborne Thermoactinomyces vulgaris by real-time PCR. J. Microbiol. Methods 2013, 92, 25–32. [Google Scholar] [CrossRef]
- Chang, M.W.; Lee, C.R.; Hung, H.F.; Teng, K.S.; Huang, H.; Chuang, C.Y. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes. Int. J. Environ. Res. Public Health 2014, 11, 337–354. [Google Scholar]
- Schlosser, O.; Robert, S.; Debeaupuis, C.; Huyard, A. Inhalable dust as a marker of exposure to airborne biological agents in composting facilities. Waste Manag. 2018, 81, 78–87. [Google Scholar]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar]
- Carballa, M.; Regueiro, L.; Lema, J.M. Microbial management of anaerobic digestion: Exploiting the microbiome-functionality nexus. Curr. Opin. Biotechnol. 2015, 33, 103–111. [Google Scholar]
- Suryawanshi, P.C.; Chaudhari, A.B.; Kothari, R.M. Thermophilic anaerobic digestion: The best option for waste treatment. Crit. Rev. Biotechnol. 2010, 30, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.P.; Conway, P.L.; Schlundt, J. Methanogens in humans: Potentially beneficial or harmful for health. Appl. Microbiol. Biotechnol. 2018, 102, 3095–3104. [Google Scholar] [CrossRef] [PubMed]
- Anedda, E.; Carletto, G.; Gilli, G.; Traversi, D. Monitoring of Air Microbial Contaminations in Different Bioenergy Facilities Using Cultural and Biomolecular Methods. Int. J. Environ. Res. Public Health 2019, 16, 2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubuis, M.E.; M’Bareche, H.; Veillette, M.; Bakhiyi, B.; Zayed, J.; Lavoie, J.; Duchaine, C. Bioaerosols concentrations in working areas in biomethanization facilities. J. Air Waste Manag. Assoc. 2017, 67, 1258–1271. [Google Scholar] [CrossRef] [Green Version]
- Madsen, A.M.; Mårtensson, L.; Schneider, T.; Larsson, L. Microbial dustiness and particle release of different biofuels. Ann. Occup. Hyg. 2004, 48, 327–338. [Google Scholar]
- Timm, M.; Madsen, A.M.; Hansen, J.V.; Moesby, L.; Hansen, E.W. Assessment of the total inflammatory potential of bioaerosols by using a granulocyte assay. Appl. Environ. Microbiol. 2009, 75, 7655–7662. [Google Scholar]
- Traversi, D.; Gorrasi, I.; Pignata, C.; Degan, R.; Anedda, E.; Carletto, G.; Vercellino, G.; Fornasero, S.; Bertino, A.; Filippi, F.; et al. Aerosol exposure and risk assessment for green jobs involved in biomethanization. Environ. Int. 2018, 114, 202–211. [Google Scholar] [CrossRef]
- Mbareche, H.; Morawska, L.; Duchaine, C. On the interpretation of bioaerosol exposuremeasurements and impacts on health. J. Air Waste Manag. Assoc. 2019, 69, 789–804. [Google Scholar]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, O.; Robert, S.; Debeaupuis, C. Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites. Int. J. Hyg. Environ. Health 2016, 219, 239–251. [Google Scholar] [CrossRef]
- Wouters, I.M.; Spaan, S.; Douwes, J.; Doekes, G.; Heederik, D. Overview of Personal Occupational Exposure Levels to Inhalable Dust, Endotoxin, β(1→3)-Glucan and Fungal Extracellular Polysaccharides in the Waste Management Chain. Ann. Occup. Hyg. 2005, 50, 39–53. [Google Scholar] [PubMed]
- Lakey, P.S.J.; Berkemeier, T.; Tong, H.; Arangio, A.M.; Lucas, K.; Pöschl, U.; Shiraiwa, M. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 2016, 6, 1–6. [Google Scholar]
- Nayak, A.P.; Green, B.J.; Lemons, A.R.; Marshall, N.B.; Goldsmith, W.T.; Kashon, M.L.; Anderson, S.E.; Germolec, D.R.; Beezhold, D.H. Subchronic exposures to fungal bioaerosols promotes allergic pulmonary inflammation in naïve mice. Clin. Exp. Allergy 2016, 46, 861–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, A.M.; Saber, A.T.; Nordly, P.; Kumar, A.; Wallin, H.; Vogel, U. Inflammation but no DNA (deoxyribonucleic acid) damage in mice exposed to airborne dust from a biofu. Scand. J. Work Environ. Health 2008, 34, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Asokan, G.V.; Asokan, V. Bradford Hill’s criteria, emerging zoonoses, and One Health. J. Epidemiol. Glob. Health 2016, 6, 125–129. [Google Scholar]
- Dacarro, C.; Grignani, E.; Lodola, L.; Grisoli, P.; Cottica, D. Proposed microbiological indexes for the assessment of air quality in buildings. G. Ital. Med. Lav. Ergon. 2010, 22, 229–235. [Google Scholar]
- TRBA 400 Handlungsanleitung zur Gefährdungsbeurteilung und für die Unterrichtung der Beschäftigten bei Tätigkeiten mit Biologischen Arbeitsstoffen. Available online: https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBA/TRBA-400.html (accessed on 28 April 2020).
- Balty, I.; Bertrand, N.; David, C.; Burzoni, S.; Clerc, F.; Duquenne, P.; Simon, X.; Caron, V.; Facon, B.; Renevot, V. Valeurs guides endotoxines. Interprétation des résultats de métrologie des bioaérosols. Hyg. Sécur. Trav. 2015, 239, 46–51. [Google Scholar]
- Environment Agency UK. Bioaerosol Monitoring at Regulated Facilities—Use of M9: RPS 209; Environmental Agency UK: Rotheram, UK, 2018. [Google Scholar]
- EN 13098. Guidelines for Measurement of Airborne Microorganisms and Endotoxin. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030037644 (accessed on 28 April 2020).
- CEN/TS 16115-1. Measurement of Bioaerosols. Part. 1: Determination of Moulds Using Filter Sampling Systems and Culture-Based Analyses. Available online: https://www.sis.se/en/produkter/environment-health-protection-safety/air-quality/ambient-atmospheres/siscents1611512011/ (accessed on 28 April 2020).
- EN 1403. Determination of Airborne Endotoxins. Available online: http://store.uni.com/catalogo/en-14031-2003?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com/ (accessed on 28 April 2020).
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.; Lee, T.K.; Choi, E.J.; Yang, J.; Shukla, S.K.; Hwang, S.I.L.; Park, J. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J. Environ. Sci. 2017, 51, 234–247. [Google Scholar] [CrossRef]
- Gong, J.; Qi, J.; Beibei, E.; Yin, Y.; Gao, D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 2020, 257, 113485. [Google Scholar]
- Ghosh, B.; Lal, H.; Srivastava, A. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 2015, 85, 254–272. [Google Scholar] [PubMed]
- Haig, C.W.; Mackay, W.G.; Walker, J.T.; Williams, C. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. J. Hosp. Infect. 2016, 93, 242–255. [Google Scholar] [PubMed]
- Tian, J.H.; Yan, C.; Nasir, Z.A.; Alcega, S.G.; Tyrrel, S.; Coulon, F. Real time detection and characterisation of bioaerosol emissions from wastewater treatment plants. Sci. Total Environ. 2020, 721, 137629. [Google Scholar] [CrossRef]
- Cho, Y.S.; Hong, S.C.; Choi, J.; Jung, J.H. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sens. Actuators B Chem. 2019, 284, 525–533. [Google Scholar] [PubMed]
- Pilote, J.; Létourneau, V.; Girard, M.; Duchaine, C. Quantification of airborne dust, endotoxins, human pathogens and antibiotic and metal resistance genes in Eastern Canadian swine confinement buildings. Aerobiologia 2019, 35, 283–296. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Bilodeau, G.J.; Duchaine, C. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 2018, 84, 1–22. [Google Scholar]
- Jiang, W.; Liang, P.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nat. Protoc. 2015, 10, 768–779. [Google Scholar]
- Madsen, A.M.; Frederiksen, M.W.; Jacobsen, M.H.; Tendal, K. Towards a risk evaluation of workers’ exposure to handborne and airborne microbial species as exemplified with waste collection workers. Environ. Res. 2020, 183, 109177. [Google Scholar]
- Nasir, Z.A.; Rolph, C.; Collins, S.; Stevenson, D.; Gladding, T.L.; Hayes, E.; Williams, B.; Khera, S.; Jackson, S.; Bennett, A.; et al. A controlled study on the characterisation of bioaerosols emissions from compost. Atmosphere 2018, 9, 1–15. [Google Scholar]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 1–16. [Google Scholar]
- Madsen, A.M.; Zervas, A.; Tendal, K.; Nielsen, J.L. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Environ. Res. 2015, 140, 255–267. [Google Scholar] [PubMed] [Green Version]
- Cox, J.; Mbareche, H.; Lindsley, W.G.; Duchaine, C. Field sampling of indoor bioaerosols. Aerosol Sci. Technol. 2019, 54, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.M.; Thilsing, T.; Bælum, J.; Garde, A.H.; Vogel, U. Occupational exposure levels of bioaerosol components are associated with serum levels of the acute phase protein Serum Amyloid A in greenhouse workers. Environ. Health 2016, 15, 1–9. [Google Scholar]
- Druckenmüller, K.; Gärtner, A.; Jäckel, U.; Klug, K.; Schiffels, J.; Günther, K.; Elbers, G. Development of a methodological approach for the characterization of bioaerosols in exhaust air from pig fattening farms with MALDI-TOF mass spectrometry. Int. J. Hyg. Environ. Health 2017, 220, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Núñez, A.; de Paz, G.A.; Rastrojo, A.; García, A.M.; Alcamí, A.; Montserrat Gutiérrez-Bustillo, A.; Moreno, D.A. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments. Int. Microbiol. 2016, 19, 69–80. [Google Scholar] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar]
- Mbareche, H.; Brisebois, E.; Veillette, M.; Duchaine, C. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain. Sci. Total Environ. 2017, 599–600, 2095–2104. [Google Scholar]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.I.; McDonald, D.; et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar]
- Torsvik, V.; Daae, F.L.; Sandaa, R.A.; Øvreås, L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 1998, 64, 53–62. [Google Scholar]
- Shade, A.; Hogan, C.S.; Klimowicz, A.K.; Linske, M.; Mcmanus, P.S.; Handelsman, J. Culturing captures members of the soil rare biosphere. Environ. Microbiol. 2012, 14, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Emerson, J.B.; Adams, R.I.; Román, C.M.B.; Brooks, B.; Coil, D.A.; Dahlhausen, K.; Ganz, H.H.; Hartmann, E.M.; Hsu, T.; Justice, N.B.; et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Hung, N.T.; Chen, N.T. Optimization and application of propidium monoazide-quantitative PCR method for viable bacterial bioaerosols. J. Aerosol Sci. 2017, 104, 90–99. [Google Scholar]
- Kircher, M.; Kelso, J. High-throughput DNA sequencing—Concepts and limitations. Bioessays 2010, 32, 524–536. [Google Scholar] [CrossRef]
- Prussin, A.J.; Marr, L.C.; Bibby, K.J. Challenges of studying viral aerosol metagenomics and communities in comparison with bacterial and fungal aerosols. FEMS Microbiol. Lett. 2014, 357, 1–9. [Google Scholar]
- Prussin, A.J.; Torres, P.J.; Shimashita, J.; Head, S.R.; Bibby, K.J.; Kelley, S.T.; Marr, L.C. Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. Microbiome 2019, 7, 1–14. [Google Scholar]
- Prost, K.; Kloeze, H.; Mukhi, S.; Bozek, K.; Poljak, Z.; Mubareka, S. Bioaerosol and surface sampling for the surveillance of influenza A virus in swine. Transbound. Emerg. Dis. 2019, 66, 1210–1217. [Google Scholar]
- Casati, S.; Conza, L.; Bruin, J.; Gaia, V. Compost facilities as a reservoir of Legionella pneumophila and other Legionella species. Clin. Microbiol. Infect. 2010, 16, 945–947. [Google Scholar]
- Mbareche, H.; Veillette, M.; Dubuis, M.È.; Bakhiyi, B.; Marchand, G.; Zayed, J.; Lavoie, J.; Bilodeau, G.J.; Duchaine, C. Fungal bioaerosols in biomethanization facilities. J. Air Waste Manag. Assoc. 2018, 68, 1198–1210. [Google Scholar]
- Ribera, A.; Benavent, E.; Lora-Tamayo, J.; Tubau, F.; Pedrero, S.; Cabo, X.; Ariza, J.; Murillo, O. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: The benefits of combination therapy with colistin plus β-lactams. J. Antimicrob. Chemother. 2015, 70, 3357–3365. [Google Scholar]
- Park, S.Y.; Park, H.J.; Moon, S.M.; Park, K.H.; Chong, Y.P.; Kim, M.N.; Kim, S.H.; Lee, S.O.; Kim, Y.S.; Woo, J.H.; et al. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect. Dis. 2012, 12, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecker, D.J.; Sampath, R.; Willett, P.; Wyatt, J.R.; Samant, V.; Massire, C.; Hall, T.A.; Hari, K.; McNeil, J.A.; Büchen-Osmond, C.; et al. The Microbial Rosetta Stone Database: A compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol. 2005, 5, 1–17. [Google Scholar]
Author (Year) | Country | Number of Sites | Sampling Method | Total Bacteria and Fungi | Data Used for Risk Assessment Improvement |
---|---|---|---|---|---|
Betelli, 2013 [32] | France | 5 composting plants: - green waste - WWTP - biowaste - OFMSW | 37 mm OFCs | Thermophilic bacteria: 103–107 CFU/m3 | Yes, qPCR count 100/1000 times more than culture-dependent method or epifluorescent microscopy |
Chang, 2014 [33] | Taiwan | 1 food waste composting plant | TI-10-890 | Bacteria: Mesophiles 4 × 104 CFU/m3 Thermophiles 1.7 × 104 CFU/m3 - Fungi: Mesophiles 5.4 × 103 CFU/m3 Thermophiles 3.4 ×103 CFU/m3 | Yes, correlate the bioaerosol components with inflammatory cytokine secretion and the increase expression of remodeling gene in NCI-H292 cells |
Gutarowska, 2014 [19] | Poland | 4 sites: 2 producing button mushroom substrates 2 green waste | MAS-100 Eco Air Sampler | Composting plants producing button mushroom substrates: fungi: 4.6 × 102–8.6 × 103 CFU/m3 bacteria: 1.6 × 103–6.4 × 104 CFU/m3 Green waste composting plants: fungi: 2.3 × 103–1.8 × 104 CFU/m3 bacteria: 1.8 × 103–1.6 × 104 CFU/m3 | Yes, indicators of harmful biological agents are proposed. |
Le Goff, 2012 [18] | France | 11 open windrows: - 4 green waste - 4 WWTP - 2 OFMSW - 1 mixture of previous | Coriolis ® μ | -Background total bacteria 2.5 × 106 cell/m3 viable bacteria 2.3 × 103 cells/m3 culturable bacteria and fungi 103 CFU/m3 -Turning process total bacteria 108 cell/m3 viable bacteria 2.3 × 106 cells/m3 culturable bacteria and fungi 105 CFU/m3 | Yes, the integration with other indicators (Saccharopolyspora spp. and Thermoactinomicetaceae) in monitoring bioaerosols emission in composting plants |
Schlosser, 2018 [34] | France (7) Spain (1) | 8 sludge composting plants: 1 enclosed 5 partially confined 2 open-air | CIP 10 Aerosol Sampler | Inhalable dust 6.5 (6.1) < 0.1–223.9 mg/m3 Mesophilic bacteria 4.9 × 106 (32.7) 1200–5.5 × 109 CFU/m3 | Yes, dust influence culturable bacteria concentration. Measurement of dust can be used for risk assessment |
Author (Year) | Country | Number of Sites | Sampling Method | Total Bacteria and Fungi | Data Used for Risk Assessment Improvement |
---|---|---|---|---|---|
Anedda, 2019 [39] | Italy | 6 bioenergy plants: - ALB - LCB - OFMSW - WWTP | DUO SAS Super 360 Sampler | - Biomolecular Total Count at 37 °C Log10(CFU/m3) ALB: 2.49 ± 0.44 LCB: 3.14 ± 0.97 OFMSW: 3.18 ± 0.97 WWTP: 2.36 ± 1.23 - LMA Bacterial Count Log10(CFU/m3): ALB: 4.27± 0.35 LCB: 4.75 ± 0.20 OFMSW: 4.41 ± 0.31 WWTP: 3.76 ± 0.75 | Yes, integration of culture-dependent and -independent methods for a more efficient characterization |
Dubuis, 2017 [40] | Canada | 2 sites: - WWTS + ALB + OFMWS - OFMWS | - AMS - SASS ® 3100 Dry Air Sampler | - Total bacteria Cultural method: 102–104 CFU/m3 qPCR: 104–106 CFU/m3 | Yes, qPCR count 100/1000 times more than culture-dependent method. qPCR detect non-viable and non-culturable microorganisms |
Madsen, 2004 [41] | Denmark | -Cultivable bacteria: briquette and pellet 20-60 CFU/mg straw and wood chip 8 × 104–3.1 × 106 CFU/mg -Total fungi: briquettes and pellet BD straw and wood chip 4.5 × 106 CFU/mg | Yes, identification of new possible indicators of the bioaerosol contamination | ||
Timm, 2009 [42] | Denmark | 22 biofuel plants | GSP Inhalable Sampler | Total bacteria: 1 × 104 –5.4 × 107/m3 Fungi: fungal spores: 8.1 × 102– 1.3 × 107/m3 NAGase 5 × 10−2 – 2.5 pmol/s | Yes, identification TIP is a cheaper and faster method for bioaerosol characterization |
Traversi, 2018 [43] | Italy | 5 plants: - OFMWS - ALB - WWTP | DUO SAS Super 360 Sampler | Environmental count at 22 °C 546 CFU/m3 Mesophilic count at 37 °C 1420 CFU/m3 Thermophilic count at 55 °C 934 CFU/m3 | Yes, a semi-quantitative risk assessment method for anaerobic digestion facilities |
Methods | Strength | Weakness | |
---|---|---|---|
Sampling | Filtration | High collection efficiency (for particles >0.4 μm); Portability; Viable microorganisms; Cultural and biomolecular analysis Variable flow rates, it depends on the employed sampler (low 2 L/min; medium 10–30 L/min or high 300–1000 L/min) Also virus collection | Spore forming microorganism’s selection; Dehydrating problem at high flow rate The low and medium flow produce a scarce quantity of material for the bioaerosol analysis |
Impaction | Variable flow rate but generally <200 L/min; Portability; Generally, only cultural method | Difficult nucleic acids extraction; Viability reduction; Recovery reduction | |
Impinger | Low flow rates (<100 L/min); Shorter sampling period; Cultural and biomolecular analysis; Sample directly in liquid | Lower collection efficiency than filters; Low portability; Difficult nucleic acids extraction; Evaporation bias Less cheap | |
Extraction | Phenol-chloroform | Better lysis Cheap | Not standardized Time-consuming |
Commercial kits (DNeasy PowerSoil Kit Qiagen, PowerViral DNA/RNA Kit Qiagen, etc.) | Standardized method Time-saving | Less cheap | |
Current Analysis | Cultural | Viable microorganisms; Cheap; Possible API® determination | Qualitative analysis; Do not detect unculturable microorganisms; Detection of 1.5–15.3% of all the species |
Real time qPCR | Quantitative analysis; High sensitivity and accuracy; High reproducibility; High number of samples; Detect unculturable microorganisms | Detect also non-viable microorganisms | |
PCR-DGGE | Numerically dominant community members; Community changes and differences | Weak reproducibility; Low specificity; Qualitative analysis; Gradient production | |
MALDI-TOF | Rapid analysis after the growth on plate Sensitive Cheap if the equipment is already available | Previous cultural step or bioaerosol sample pre-treatment; Identification limited to known peptide mass fingerprints | |
NGS Analysis | Targeted Amplicon Sequencing rRNA | Bacterial and fungal sequencing; Reduction of bias with degenerated oligonucleotides; Most used method | High sample quantity; Previous PCR step; Expensive; Over-estimation; Detect non-viable microorganisms; Relative abundance sloped; No viral identification |
Shotgun metagenomics | Whole genome Viral detection Taxonomic biodiversity and biological functions Global biome characterization Absolute abundance No PCR biases No previous knowledge of the sequences | High sample quantity; Expensive; Challenging bioinformatics analyses; Detect non-viable microorganisms |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchitti, E.; Pascale, E.; Fea, E.; Anedda, E.; Traversi, D. Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmosphere 2020, 11, 452. https://doi.org/10.3390/atmos11050452
Franchitti E, Pascale E, Fea E, Anedda E, Traversi D. Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmosphere. 2020; 11(5):452. https://doi.org/10.3390/atmos11050452
Chicago/Turabian StyleFranchitti, Elena, Erica Pascale, Elisabetta Fea, Elisa Anedda, and Deborah Traversi. 2020. "Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment" Atmosphere 11, no. 5: 452. https://doi.org/10.3390/atmos11050452
APA StyleFranchitti, E., Pascale, E., Fea, E., Anedda, E., & Traversi, D. (2020). Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmosphere, 11(5), 452. https://doi.org/10.3390/atmos11050452