Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones
Abstract
1. Introduction
2. Data and Method
3. Characteristics of ECSs at BJ2022 Competition Zones
4. Dominant Circulation Patterns of the ECSs in the Competition Zones of BJ2022
5. Dominant Pre-Signals Causing the ECSs at BJ2022 Competition Zones
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, J.L.; Furtado, J.C.; Barlow, M.A.; Alexeev, V.A.; Cherry, J.E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 2012, 7, 014007. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, X.; Yang, X.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 2013, 8, 014036. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhu, C.W.; Liu, B.Q.; Zhou, T.J.; Ding, Y.H.; Orsolini, Y.J. Polarized response of East Asian winter temperature extremes in the era of Arctic warming. J. Clim. 2018, 31, 5543–5557. [Google Scholar] [CrossRef]
- Tian, B.; Fan, K.; Yang, H. East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system. Clim. Dyn. 2018, 51, 2793–2805. [Google Scholar] [CrossRef]
- Dai, H.X.; Fan, K.; Liu, J.P. Month-to-month variability of winter temperature over Northeast China linked to sea ice over the Davis Strait-Baffin Bay and the Barents-Kara Sea. J. Clim. 2019, 32, 6365–6384. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhu, C.W. Extreme cold wave over East Asia in January 2016: A possible response to the larger internal atmospheric variability induced by Arctic warming. J. Clim. 2019, 32, 1203–1216. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Liu, N.J.; Li, Q.; Ma, Y.L. Analysis of natural disasters in the first quarter of 2016. Disaster Reduct. China 2016, 9, 60–63. [Google Scholar]
- Sun, Y.; Hu, T.; Zhang, X.; Wan, H.; Stott, P.; Lu, C. Anthropogenic Influence on the Eastern China 2016 Super Cold Surge. Bull. Am. Meteorol. Soc. 2018, 99, S123–S127. [Google Scholar] [CrossRef]
- Liu, N.J.; Zhang, D.; Wang, Y. Major natural disasters in China in 2018. Disaster Reduct. China 2019, 5, 18–23. [Google Scholar]
- Monthly Climate Impact Assessment Report in China. Available online: https://cmdp.ncc-cma.net/influ/moni_china.php (accessed on 14 March 2020).
- Castellani, J.W.; Young, A.J. Health and performance challenges during sports training and competition in cold weather. Br. J. Sports Med. 2012, 46, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Frohlich, D.; Bermon, S.; Adami, P.E. Visualization of climate factors for sports events and activities-The Tokyo 2020 Olympic Games. Atmosphere 2019, 10, 572. [Google Scholar] [CrossRef]
- Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W.J.; Eubank, M.; Splitt, M.; Onton, D.J. 2002: Weather support for the 2002 winter Olympic and Paralympic Games. Bull. Am. Meteorol. Soc. 2002, 83, 227–240. [Google Scholar] [CrossRef][Green Version]
- Kiktev, D.; Joe, P.; Isaac, G.A.; Montani, A.; Frogner, I.L.; Nurmi, P.; Bica, B.; Milbrandt, J.; Tsyrulnikov, M.; Astakhova, E.; et al. FROST-2014: The Sochi winter Olympics international project. Bull. Am. Meteorol. Soc. 2017, 98, 1908–1929. [Google Scholar]
- Lee, Y.; Lee, G.; Joo, S.; Ahn, K.D. Observational study of surface wind along a sloping surface over mountainous terrain during winter. Adv. Atmos. Sci. 2018, 35, 276–284. [Google Scholar] [CrossRef]
- Wang, J.; Yu, C.W. Beijing 2022 Weather Report; China Meteorology Press: Beijing, China, 2019. [Google Scholar]
- Gu, Z.C. A preliminary study on the mid-range forecast of cold wave in autumn and winter in China. Acta. Meteorol. Sin. 1956, 2, 127–134. [Google Scholar]
- Tao, S.Y. Study on East Asian cold waves in China during recent 10 years (1949-1959). Acta. Meteorol. Sin. 1959, 30, 226–230. [Google Scholar]
- Ding, Y.H.; Krishnamurti, T.N. Heat budget of the Siberian high and the winter monsoon. Mon. Weather Rev. 1987, 115, 2428–2449. [Google Scholar] [CrossRef]
- Zhu, Q.G.; Lin, J.R.; Shou, S.W.; Tang, D.S. Principles and Methods of Meteorology; China Meteorology Press: Beijing, China, 2010. [Google Scholar]
- Yu, H.S.; Li, X.D. Spectral classification and prediction of cold wave. Meteorol. Mon. 1985, 2, 11–13. [Google Scholar]
- Xu, G.H. Method of Cold wave mid-range forecast. Meteorol. Mon. 1985, 2, 6–10. [Google Scholar]
- Yu, H.S.; Li, X.D.; Zhang, F.F.; Chen, S.M. The mid-range synoptic statistical characteristics and forecast model of cold wave. Meteorol. Mon. 1987, 10, 33–36. [Google Scholar]
- Li, K.L. A new mid- and long-range cold wave forecast with similar parameter and 500 hPa pentad grid data. Meteorol. Mon. 1996, 3, 40–42. [Google Scholar]
- Lu, F.C.; Juang, H.M.H.; Liao, C.C. A numerical case study of the passage of a cold surge across Taiwan. Meteorol. Atmos. Phys. 2007, 95, 27–52. [Google Scholar] [CrossRef]
- Di Liberto, T.; Colle, B.A.; Georgas, N.; Blumberg, A.F.; Taylor, A.A. Verification of a multimodel storm surge ensemble around New York city and Long Island for the cool season. Weather Forecast. 2011, 26, 922–939. [Google Scholar] [CrossRef]
- Qi, L.; Ma, Q.; Zhang, W.J. Verification of forecasting capability of cold wave process in the winter of 2011/2012 with GRAPES. Trans. Atmos. Sci. 2017, 40, 791–802. [Google Scholar]
- Benjamin, S.G.; Brown, J.M.; Brunet, G.; Lynch, P.; Saito, K.; Schlatter, T.W. 100 years of progress in forecasting and NWP applications. Meteorol. Monogr. 2018, 59, 1–67. [Google Scholar] [CrossRef]
- Tao, Y.W.; Dai, K.; Dong, Q. Extreme analysis and ensemble prediction verification on cold wave process in January 2016. Meteorol. Mon. 2017, 43, 1176–1185. [Google Scholar]
- Wei, Z.G.; Zhu, X.; Dong, W.J.; Liu, Y.J.; Chen, G.Y.; Liu, Y.J. Evaluation on forecasts of a cold wave in China and its Eurasian cold air activity by CFSv2 system in November 2015. Plateau Meteorol. 2019, 38, 673–684. [Google Scholar]
- Ren, Z.H.; Yu, Y.; Zou, F.L.; Xu, Y. Quality detection of surface historical basic meteorological data. J. Appl. Meteorol. Sci. 2012, 23, 739–747. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Joseph, D. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zou, X.K.; Gao, R. Monitoring Indices of Low Temperature Extremes and Temperature Drop Extremes. 2017. Available online: http://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D81DE5D3A7E05397BE0A0AB82A (accessed on 25 January 2020).
- Wang, Z.M. Tracks and Characteristics Analysis of Strong Cold Air Invading Northern China during Winter Half Year. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2018. [Google Scholar]
- Ma, S.Q.; Li, F.; Wang, Q.; Yang, K.M.; Sun, Z.F.; Wang, X.W. Cold Surge and Frost; China Meteorology Press: Beijing, China, 2009. [Google Scholar]
- Ding, Y.H. Climate in China; Science Press: Beijing, China, 2013. [Google Scholar]
- Wang, Z.Y.; Si, D.; Duan, L.Y. Monitoring Indices of Cold Air Processes. 2017. Available online: http://hbba.sacinfo.org.cn/stdDetail/df0f5ef16f2dd5f69ee048674ceda3cb (accessed on 25 January 2020).
- Wei, R.Q.; Zong, Z.P.; Tang, Y. Grade of Cold Wave; 2017. Available online: http://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D81F9BD3A7E05397BE0A0AB82A (accessed on 25 January 2020).
- Wang, J.; Jiang, D.K.; Zhang, Y.J. Analysis on spatial and temporal variation of extreme climate events in North China. Chin. J. Agrometeorol. 2012, 33, 166–173. [Google Scholar]
- Hartmann, D.L.; Tank, A.M.K.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. 2013: Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Trenberth, K.; Fasullo, J.; Branstator, G.; Phillips, A.S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Chang. 2014, 4, 911–916. [Google Scholar] [CrossRef]
- Fyfe, J.; Meehl, G.; England, M.; Mann, M.E.; Santer, B.D.; Flato, G.M.; Hawkins, E.; Gillett, N.P.; Xie, S.P.; Kosaka, Y.; et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Chang. 2016, 6, 224–228. [Google Scholar] [CrossRef]
- Johnson, N.C.; Xie, S.P.; Kosaka, Y.; Li, X.C. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 2018, 9, 1724. [Google Scholar] [CrossRef]
- Gong, H.N.; Wang, L.; Chen, W. Multidecadal Changes in the Influence of the Arctic Oscillation on the East Asian Surface Air Temperature in Boreal Winter. Atmosphere 2019, 10, 757. [Google Scholar] [CrossRef]
- Hu, X.M.; Sejas, S.A.; Cai, M.; Taylor, P.C.; Deng, Y.; Yang, S. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim. Clim. Dyn. 2019, 52, 2005–2016. [Google Scholar] [CrossRef]
- Wang, L.; Deng, A.Y.; Huang, R.H. Wintertime internal climate variability over Eurasia in the CESM large ensemble. Clim. Dyn. 2019, 52, 6735–6748. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. An Intensity Index for the East Asian Winter Monsoon. J. Clim. 2014, 27, 2361–2374. [Google Scholar] [CrossRef]
- Hao, X.; Li, F.; Sun, J.Q. Assessment of the response of the East Asian winter monsoon to ENSO-like SSTAs in three USCLIVAR Project models. Int. J. Climatol. 2016, 36, 847–866. [Google Scholar] [CrossRef]
- Wu, S.; Sun, J.Q. Variability in zonal location of winter East Asian jet stream. Int. J. Climatol. 2017, 37, 3753–3766. [Google Scholar] [CrossRef]
- Yu, S.; Sun, J.Q. Potential factors modulating ENSO’s influences on the East Asian trough in boreal winter. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Zsótér, E. Recent developments in extreme weather forecasting. ECMWF Newsl. 2006, 107, 8–17. [Google Scholar]
- Zhu, Y.J.; Cui, B. NAEFS mean, spread and probability forecasts. NOAA/NCEP Rep. 2007, 4. [Google Scholar]
- Gao, L.; Chen, J.; Zheng, J.W.; Chen, Q.L. Progress in researches on ensemble forecasting of extreme weather based on numerical models. Adv. Earth Sci. 2019, 34, 706–716. [Google Scholar]
- Lalaurette, F. Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Q. J. Roy. Meteorol. Soc. 2003, 129, 3037–3057. [Google Scholar] [CrossRef]
- Jana, S.; Thordis, T.; Noel, K.; Nathalie, S.; Lisa, V.A.; Gabriele, H.; Sonia, I.S.; Robert, V.; Zhang, X.B.; Francis, W.Z. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar]
- Guan, H.; Zhu, Y. Development of Verification Methodology for Extreme Weather Forecasts. Weather Forecast. 2017, 32, 479–491. [Google Scholar] [CrossRef]
- Vasil’ev, E.V.; Dmitrieva, T.G. Forecasting extreme weather phenomena and processes during the test events and Sochi-2014 Olympic and Paralympic Games. Russ. Meteorol. Hydrol. 2015, 40, 513–522. [Google Scholar] [CrossRef]
- Chen, G.J.; Wei, F.Y.; Yao, W.Q.; Zhou, X. Extended range forecast experiments of persistent winter low temperature indexes based on intra-seasonal oscillation over southern China. Acta Meteorol. Sin. 2017, 75, 400–414. [Google Scholar]
- Yang, Q.M. A study of the extended-range forecast for the low frequency temperature and high temperature weather over the lower reaches of Yangtze River Valley in summer. Adv. Earth Sci. 2018, 33, 385–395. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, T.; Gao, H.; Yuan, Y. Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones. Atmosphere 2020, 11, 436. https://doi.org/10.3390/atmos11050436
Ding T, Gao H, Yuan Y. Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones. Atmosphere. 2020; 11(5):436. https://doi.org/10.3390/atmos11050436
Chicago/Turabian StyleDing, Ting, Hui Gao, and Yuan Yuan. 2020. "Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones" Atmosphere 11, no. 5: 436. https://doi.org/10.3390/atmos11050436
APA StyleDing, T., Gao, H., & Yuan, Y. (2020). Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones. Atmosphere, 11(5), 436. https://doi.org/10.3390/atmos11050436