Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones
Abstract
:1. Introduction
2. Data and Method
3. Characteristics of ECSs at BJ2022 Competition Zones
4. Dominant Circulation Patterns of the ECSs in the Competition Zones of BJ2022
5. Dominant Pre-Signals Causing the ECSs at BJ2022 Competition Zones
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, J.L.; Furtado, J.C.; Barlow, M.A.; Alexeev, V.A.; Cherry, J.E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 2012, 7, 014007. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Zhang, X.; Yang, X.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 2013, 8, 014036. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhu, C.W.; Liu, B.Q.; Zhou, T.J.; Ding, Y.H.; Orsolini, Y.J. Polarized response of East Asian winter temperature extremes in the era of Arctic warming. J. Clim. 2018, 31, 5543–5557. [Google Scholar] [CrossRef]
- Tian, B.; Fan, K.; Yang, H. East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system. Clim. Dyn. 2018, 51, 2793–2805. [Google Scholar] [CrossRef]
- Dai, H.X.; Fan, K.; Liu, J.P. Month-to-month variability of winter temperature over Northeast China linked to sea ice over the Davis Strait-Baffin Bay and the Barents-Kara Sea. J. Clim. 2019, 32, 6365–6384. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhu, C.W. Extreme cold wave over East Asia in January 2016: A possible response to the larger internal atmospheric variability induced by Arctic warming. J. Clim. 2019, 32, 1203–1216. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Liu, N.J.; Li, Q.; Ma, Y.L. Analysis of natural disasters in the first quarter of 2016. Disaster Reduct. China 2016, 9, 60–63. [Google Scholar]
- Sun, Y.; Hu, T.; Zhang, X.; Wan, H.; Stott, P.; Lu, C. Anthropogenic Influence on the Eastern China 2016 Super Cold Surge. Bull. Am. Meteorol. Soc. 2018, 99, S123–S127. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.J.; Zhang, D.; Wang, Y. Major natural disasters in China in 2018. Disaster Reduct. China 2019, 5, 18–23. [Google Scholar]
- Monthly Climate Impact Assessment Report in China. Available online: https://cmdp.ncc-cma.net/influ/moni_china.php (accessed on 14 March 2020).
- Castellani, J.W.; Young, A.J. Health and performance challenges during sports training and competition in cold weather. Br. J. Sports Med. 2012, 46, 788–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzarakis, A.; Frohlich, D.; Bermon, S.; Adami, P.E. Visualization of climate factors for sports events and activities-The Tokyo 2020 Olympic Games. Atmosphere 2019, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W.J.; Eubank, M.; Splitt, M.; Onton, D.J. 2002: Weather support for the 2002 winter Olympic and Paralympic Games. Bull. Am. Meteorol. Soc. 2002, 83, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Kiktev, D.; Joe, P.; Isaac, G.A.; Montani, A.; Frogner, I.L.; Nurmi, P.; Bica, B.; Milbrandt, J.; Tsyrulnikov, M.; Astakhova, E.; et al. FROST-2014: The Sochi winter Olympics international project. Bull. Am. Meteorol. Soc. 2017, 98, 1908–1929. [Google Scholar]
- Lee, Y.; Lee, G.; Joo, S.; Ahn, K.D. Observational study of surface wind along a sloping surface over mountainous terrain during winter. Adv. Atmos. Sci. 2018, 35, 276–284. [Google Scholar] [CrossRef]
- Wang, J.; Yu, C.W. Beijing 2022 Weather Report; China Meteorology Press: Beijing, China, 2019. [Google Scholar]
- Gu, Z.C. A preliminary study on the mid-range forecast of cold wave in autumn and winter in China. Acta. Meteorol. Sin. 1956, 2, 127–134. [Google Scholar]
- Tao, S.Y. Study on East Asian cold waves in China during recent 10 years (1949-1959). Acta. Meteorol. Sin. 1959, 30, 226–230. [Google Scholar]
- Ding, Y.H.; Krishnamurti, T.N. Heat budget of the Siberian high and the winter monsoon. Mon. Weather Rev. 1987, 115, 2428–2449. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.G.; Lin, J.R.; Shou, S.W.; Tang, D.S. Principles and Methods of Meteorology; China Meteorology Press: Beijing, China, 2010. [Google Scholar]
- Yu, H.S.; Li, X.D. Spectral classification and prediction of cold wave. Meteorol. Mon. 1985, 2, 11–13. [Google Scholar]
- Xu, G.H. Method of Cold wave mid-range forecast. Meteorol. Mon. 1985, 2, 6–10. [Google Scholar]
- Yu, H.S.; Li, X.D.; Zhang, F.F.; Chen, S.M. The mid-range synoptic statistical characteristics and forecast model of cold wave. Meteorol. Mon. 1987, 10, 33–36. [Google Scholar]
- Li, K.L. A new mid- and long-range cold wave forecast with similar parameter and 500 hPa pentad grid data. Meteorol. Mon. 1996, 3, 40–42. [Google Scholar]
- Lu, F.C.; Juang, H.M.H.; Liao, C.C. A numerical case study of the passage of a cold surge across Taiwan. Meteorol. Atmos. Phys. 2007, 95, 27–52. [Google Scholar] [CrossRef]
- Di Liberto, T.; Colle, B.A.; Georgas, N.; Blumberg, A.F.; Taylor, A.A. Verification of a multimodel storm surge ensemble around New York city and Long Island for the cool season. Weather Forecast. 2011, 26, 922–939. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Ma, Q.; Zhang, W.J. Verification of forecasting capability of cold wave process in the winter of 2011/2012 with GRAPES. Trans. Atmos. Sci. 2017, 40, 791–802. [Google Scholar]
- Benjamin, S.G.; Brown, J.M.; Brunet, G.; Lynch, P.; Saito, K.; Schlatter, T.W. 100 years of progress in forecasting and NWP applications. Meteorol. Monogr. 2018, 59, 1–67. [Google Scholar] [CrossRef]
- Tao, Y.W.; Dai, K.; Dong, Q. Extreme analysis and ensemble prediction verification on cold wave process in January 2016. Meteorol. Mon. 2017, 43, 1176–1185. [Google Scholar]
- Wei, Z.G.; Zhu, X.; Dong, W.J.; Liu, Y.J.; Chen, G.Y.; Liu, Y.J. Evaluation on forecasts of a cold wave in China and its Eurasian cold air activity by CFSv2 system in November 2015. Plateau Meteorol. 2019, 38, 673–684. [Google Scholar]
- Ren, Z.H.; Yu, Y.; Zou, F.L.; Xu, Y. Quality detection of surface historical basic meteorological data. J. Appl. Meteorol. Sci. 2012, 23, 739–747. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Joseph, D. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zou, X.K.; Gao, R. Monitoring Indices of Low Temperature Extremes and Temperature Drop Extremes. 2017. Available online: http://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D81DE5D3A7E05397BE0A0AB82A (accessed on 25 January 2020).
- Wang, Z.M. Tracks and Characteristics Analysis of Strong Cold Air Invading Northern China during Winter Half Year. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2018. [Google Scholar]
- Ma, S.Q.; Li, F.; Wang, Q.; Yang, K.M.; Sun, Z.F.; Wang, X.W. Cold Surge and Frost; China Meteorology Press: Beijing, China, 2009. [Google Scholar]
- Ding, Y.H. Climate in China; Science Press: Beijing, China, 2013. [Google Scholar]
- Wang, Z.Y.; Si, D.; Duan, L.Y. Monitoring Indices of Cold Air Processes. 2017. Available online: http://hbba.sacinfo.org.cn/stdDetail/df0f5ef16f2dd5f69ee048674ceda3cb (accessed on 25 January 2020).
- Wei, R.Q.; Zong, Z.P.; Tang, Y. Grade of Cold Wave; 2017. Available online: http://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D81F9BD3A7E05397BE0A0AB82A (accessed on 25 January 2020).
- Wang, J.; Jiang, D.K.; Zhang, Y.J. Analysis on spatial and temporal variation of extreme climate events in North China. Chin. J. Agrometeorol. 2012, 33, 166–173. [Google Scholar]
- Hartmann, D.L.; Tank, A.M.K.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. 2013: Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Trenberth, K.; Fasullo, J.; Branstator, G.; Phillips, A.S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Chang. 2014, 4, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, J.; Meehl, G.; England, M.; Mann, M.E.; Santer, B.D.; Flato, G.M.; Hawkins, E.; Gillett, N.P.; Xie, S.P.; Kosaka, Y.; et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Chang. 2016, 6, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.C.; Xie, S.P.; Kosaka, Y.; Li, X.C. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 2018, 9, 1724. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.N.; Wang, L.; Chen, W. Multidecadal Changes in the Influence of the Arctic Oscillation on the East Asian Surface Air Temperature in Boreal Winter. Atmosphere 2019, 10, 757. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.M.; Sejas, S.A.; Cai, M.; Taylor, P.C.; Deng, Y.; Yang, S. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim. Clim. Dyn. 2019, 52, 2005–2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Deng, A.Y.; Huang, R.H. Wintertime internal climate variability over Eurasia in the CESM large ensemble. Clim. Dyn. 2019, 52, 6735–6748. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. An Intensity Index for the East Asian Winter Monsoon. J. Clim. 2014, 27, 2361–2374. [Google Scholar] [CrossRef]
- Hao, X.; Li, F.; Sun, J.Q. Assessment of the response of the East Asian winter monsoon to ENSO-like SSTAs in three USCLIVAR Project models. Int. J. Climatol. 2016, 36, 847–866. [Google Scholar] [CrossRef]
- Wu, S.; Sun, J.Q. Variability in zonal location of winter East Asian jet stream. Int. J. Climatol. 2017, 37, 3753–3766. [Google Scholar] [CrossRef]
- Yu, S.; Sun, J.Q. Potential factors modulating ENSO’s influences on the East Asian trough in boreal winter. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Zsótér, E. Recent developments in extreme weather forecasting. ECMWF Newsl. 2006, 107, 8–17. [Google Scholar]
- Zhu, Y.J.; Cui, B. NAEFS mean, spread and probability forecasts. NOAA/NCEP Rep. 2007, 4. [Google Scholar]
- Gao, L.; Chen, J.; Zheng, J.W.; Chen, Q.L. Progress in researches on ensemble forecasting of extreme weather based on numerical models. Adv. Earth Sci. 2019, 34, 706–716. [Google Scholar]
- Lalaurette, F. Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Q. J. Roy. Meteorol. Soc. 2003, 129, 3037–3057. [Google Scholar] [CrossRef]
- Jana, S.; Thordis, T.; Noel, K.; Nathalie, S.; Lisa, V.A.; Gabriele, H.; Sonia, I.S.; Robert, V.; Zhang, X.B.; Francis, W.Z. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar]
- Guan, H.; Zhu, Y. Development of Verification Methodology for Extreme Weather Forecasts. Weather Forecast. 2017, 32, 479–491. [Google Scholar] [CrossRef]
- Vasil’ev, E.V.; Dmitrieva, T.G. Forecasting extreme weather phenomena and processes during the test events and Sochi-2014 Olympic and Paralympic Games. Russ. Meteorol. Hydrol. 2015, 40, 513–522. [Google Scholar] [CrossRef]
- Chen, G.J.; Wei, F.Y.; Yao, W.Q.; Zhou, X. Extended range forecast experiments of persistent winter low temperature indexes based on intra-seasonal oscillation over southern China. Acta Meteorol. Sin. 2017, 75, 400–414. [Google Scholar]
- Yang, Q.M. A study of the extended-range forecast for the low frequency temperature and high temperature weather over the lower reaches of Yangtze River Valley in summer. Adv. Earth Sci. 2018, 33, 385–395. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, T.; Gao, H.; Yuan, Y. Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones. Atmosphere 2020, 11, 436. https://doi.org/10.3390/atmos11050436
Ding T, Gao H, Yuan Y. Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones. Atmosphere. 2020; 11(5):436. https://doi.org/10.3390/atmos11050436
Chicago/Turabian StyleDing, Ting, Hui Gao, and Yuan Yuan. 2020. "Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones" Atmosphere 11, no. 5: 436. https://doi.org/10.3390/atmos11050436
APA StyleDing, T., Gao, H., & Yuan, Y. (2020). Pre-Signal and Influencing Sources of the Extreme Cold Surges at the Beijing 2022 Winter Olympic Competition Zones. Atmosphere, 11(5), 436. https://doi.org/10.3390/atmos11050436