Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum)
Abstract
:1. Introduction
2. Experiments and Data Analysis
2.1. Setup and Instrumentation
2.2. Fuel Characteristics
2.3. Modified Combustion Efficiency
2.4. Fuel-Based Emission Factors
2.5. Intensive Optical Aerosol Properties
2.5.1. Single Scattering Albedo
2.5.2. Absorption Ångström Exponent
2.5.3. Scattering Ångström Exponent
2.6. Analysis of Organic Species
3. Results and Discussion
3.1. Modified Combustion Efficiency
3.2. Single Scattering Albedo (SSA)
3.3. Absorption and Scattering Ångström Exponents
3.4. Comparison of Intensive Optical Aerosol Properties for Grass Combustion Emissions
3.5. Cheatgrass Emission Factors and Comparison to Previously Reported EFs for Grasses
3.6. EFs of Organic Species
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.N. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 2018, 20, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 2009, 114, 20. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A.; Houghtonw, R.A.; Mustard, J.F.; Hamburg, S.P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 2006, 12, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.W.; Nafus, A.M. Exotic annual grass invasion alters fuel amounts, continuity and moisture content. Int. J. Wildland Fire 2013, 22, 353–358. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Reeves, M.C.; Corley, R.E.; Silverstein, R.P.; Hao, W.M. Contiguous United States wildland fire emission estimates during 2003–2015. Earth Syst. Sci. Data 2018, 10, 2241–2274. [Google Scholar] [CrossRef] [Green Version]
- Dantonio, C.M.; Vitousek, P.M. Biological Invasions by Exotic Grasses, the Grass Fire Cycle, and Global Change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Chen, L.W.A.; Moosmüller, H.; Arnott, W.P.; Chow, J.C.; Watson, J.G.; Susott, R.A.; Babbitt, R.E.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environ. Sci. Technol. 2007, 41, 4317–4325. [Google Scholar] [CrossRef]
- Satheesh, S.K.; Moorthy, K.K. Radiative effects of natural aerosols: A review. Atmos. Environ. 2005, 39, 2089–2110. [Google Scholar] [CrossRef]
- Rein, G.; Hurley, M.J. Smoldering Combustion. In SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2016; pp. 581–603. [Google Scholar]
- Selimovic, V.; Yokelson, R.J.; Warneke, C.; Roberts, J.M.; de Gouw, J.; Reardon, J.; Griffith, D.W.T. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmos. Chem. Phys. 2018, 18, 2929–2948. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.; Arnott, W.P.; Moosmüller, H.; Wold, C.E. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res. Atmos. 2008, 113, 14. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Eck, T.F.; Christopher, S.A.; Koppmann, R.; Dubovik, O.; Eleuterio, D.P.; Holben, B.N.; Reid, E.A.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 827–849. [Google Scholar] [CrossRef] [Green Version]
- Chylek, P.; Wong, J. Effect of Absorbing Aerosols on Global Radiation Budget. Geophys. Res. Lett. 1995, 22, 929–931. [Google Scholar] [CrossRef]
- Hassan, T.; Moosmüller, H.; Chung, C.E. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model. J. Quant. Spectrosc. Radiat. 2015, 164, 129–136. [Google Scholar] [CrossRef]
- Moosmüller, H.; Ogren, J.A. Parameterization of the Aerosol Upscatter Fraction as Function of the Backscatter Fraction and Their Relationships to the Asymmetry Parameter for Radiative Transfer Calculations. Atmosphere 2017, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Moosmüller, H.; Chakrabarty, R.K. Technical Note: Simple analytical relationships between Angstrom coefficients of aerosol extinction, scattering, absorption, and single scattering albedo. Atmos. Chem. Phys. 2011, 11, 10677–10680. [Google Scholar] [CrossRef] [Green Version]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111, 14. [Google Scholar] [CrossRef] [Green Version]
- Moosmüller, H.; Chakrabarty, R.K.; Ehlers, K.M.; Arnott, W.P. Absorption Angstrom coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys. 2011, 11, 1217–1225. [Google Scholar] [CrossRef] [Green Version]
- Moosmüller, H.; Sorensen, C.M. Small and large particle limits of single scattering albedo for homogeneous, spherical particles. J. Quant. Spectrosc. Radiat. 2018, 204, 250–255. [Google Scholar] [CrossRef]
- Moosmüller, H.; Sorensen, C.M. Single scattering albedo of homogeneous, spherical particles in the transition regime. J. Quant. Spectrosc. Radiat. 2018, 219, 333–338. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, X.F.; Lang, J.L.; Chen, D.S.; Cheng, S.Y.; Wei, L.; Wei, X.; Liu, C. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Li, C.L.; Ristovski, Z.; Milic, A.; Gu, Y.T.; Islam, M.S.; Wang, S.X.; Hao, J.M.; Zhang, H.F.; He, C.R.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total. Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmann, B.; Duncan, B.; Textor, C.; Trentmann, J.; van der Werf, G.R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 2009, 43, 107–116. [Google Scholar] [CrossRef]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.K.; Sun, Y.; Liu, Z.R.; Ji, D.S.; Hu, B.; Liu, Q.; Wang, Y.S. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys. 2014, 14, 2887–2903. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.Y.; Huang, D.Y.; Zhang, H.J.; Wang, S.H.; Chen, X.F. Exposure to particulate matter 2.5 (PM2.5) induced macrophage-dependent inflammation, characterized by increased Th1/Th17 cytokine secretion and cytotoxicity. Int. Immunopharmacol. 2017, 50, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Persp. 2012, 120, 695–701. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Xu, X.; Xu, C.; Hong, J. Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J. Clean Prod. 2016, 112, 1360–1367. [Google Scholar] [CrossRef]
- Mandalakis, M.; Gustafsson, Ö.; Alsberg, T.; Egebäck, A.-L.; Reddy, C.M.; Xu, L.; Klanova, J.; Holoubek, I.; Stephanou, E.G. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites. Environ. Sci. Technol. 2005, 39, 2976–2982. [Google Scholar] [CrossRef]
- Galvao, M.F.D.; Alves, N.D.; Ferreira, P.A.; Caumo, S.; Vasconcellos, P.D.; Artaxo, P.; Hacon, S.D.; Roubicek, D.A.; de Medeiros, S.R.B. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 2018, 233, 960–970. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, S.; Shen, H.; Ma, J. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proc. Natl. Acad. Sci. USA 2009, 106, 21063–21067. [Google Scholar] [CrossRef] [Green Version]
- Wickramasinghe, A.P.; Karunaratne, D.; Sivakanesan, R. PM10-bound polycyclic aromatic hydrocarbons: Biological indicators, lung cancer risk of realistic receptors and ’source-exposure-effect relationship’ under different source scenarios. Chemosphere 2012, 87, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Sarigiannis, D.A.; Karakitsios, S.P.; Zikopoulos, D.; Nikolaki, S.; Kermenidou, M. Lung cancer risk from PAHs emitted from biomass combustion. Environ. Res. 2015, 137, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, C.; Samburova, V.; Sengupta, D.; Iaukea-Lum, M.; Watts, A.C.; Moosmuller, H.; Khlystov, A.Y. Physical and chemical characterization of aerosol in fresh and aged emissions from open combustion of biomass fuels. Aerosol. Sci. Technol. 2018, 52, 1266–1282. [Google Scholar] [CrossRef]
- Dhammapala, R.; Claiborn, C.; Simpson, C.; Jimenez, J. Emission factors from wheat and Kentucky bluegrass stubble burning: Comparison of field and simulated burn experiments. Atmos. Environ. 2007, 41, 1512–1520. [Google Scholar] [CrossRef]
- Samburova, V.; Connolly, J.; Gyawali, M.; Yatavelli, R.L.N.; Watts, A.C.; Chakrabarty, R.K.; Zielinska, B.; Moosmüller, H.; Khlystov, A. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci. Total Environ. 2016, 568, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Chow, J.C.; Cao, J.J.; Han, Y.; Ni, H.Y.; Chen, L.W.A.; Wang, X.L.; Huang, R.J.; Moosmüller, H.; Watson, J.G. A Biomass Combustion Chamber: Design, Evaluation, and a Case Study of Wheat Straw Combustion Emission Tests. Aerosol. Air Qual. Res. 2015, 15, 2104–2114. [Google Scholar] [CrossRef]
- Arnott, W.P.; Moosmüller, H.; Rogers, C.F.; Jin, T.F.; Bruch, R. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description. Atmos. Environ. 1999, 33, 2845–2852. [Google Scholar] [CrossRef]
- Moosmüller, H.; Arnott, W.P.; Rogers, C.F. Methods for real-time, in situ measurement of aerosol light absorption. J. Air Waste Manag. 1997, 47, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Beck, G. Cheatgrass and Wildfire. In Natural Resources Series, Fact Sheet No. 6.310; Colorado State Forest Service-Colorado State University: Fort Collins, CO, USA, 2012; p. 3. [Google Scholar]
- Watson, J.G.; Cao, J.J.; Chen, L.W.A.; Wang, Q.Y.; Tian, J.; Wang, X.L.; Gronstal, S.; Ho, S.S.H.; Watts, A.C.; Chow, J.C. Gaseous, PM2.5 mass, and speciated emission factors from laboratory chamber peat combustion. Atmos. Chem. Phys. 2019, 19, 14173–14193. [Google Scholar] [CrossRef] [Green Version]
- Patterson, R.K. Automated Pregl-Dumas technique for determining total carbon, hydrogen, and nitrogen in atmospheric aerosols. Anal. Chem. 1973, 45, 605–609. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Urbanski, S.P. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US. Atmos. Chem. Phys. 2013, 13, 7241–7262. [Google Scholar] [CrossRef] [Green Version]
- Moosmüller, H.; Engelbrecht, J.P.; Skiba, M.; Frey, G.; Chakrabarty, R.K.; Arnott, W.P. Single scattering albedo of fine mineral dust aerosols controlled by iron concentration. J. Geophys. Res. Atmos. 2012, 117, 10. [Google Scholar] [CrossRef] [Green Version]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Pistone, K.; Redemann, J.; Doherty, S.; Zuidema, P.; Burton, S.; Cairns, B.; Cochrane, S.; Ferrare, R.; Flynn, C.; Freitag, S.; et al. Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016. Atmos. Chem. Phys. 2019, 19, 9181–9208. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, D.; Samburova, V.; Bhattarai, C.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Polar semi-volatile organic compounds in biomass burning emissions and their chemical transformations during aging in an oxidation flow reactor, in review. Atmos. Chem. Phys. Discuss. 2020. [Google Scholar] [CrossRef] [Green Version]
- Rinehart, L.R.; Fujita, E.M.; Chow, J.C.; Magliano, K.; Zielinska, B. Spatial distribution of PM2.5 associated organic compounds in central California. Atmos. Environ. 2006, 40, 290–303. [Google Scholar] [CrossRef]
- Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. Forest Ecol. Manag. 2014, 317, 51–60. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning-an updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef] [Green Version]
- Christian, T.J.; Kleiss, B.; Yokelson, R.J.; Holzinger, R.; Crutzen, P.J.; Hao, W.M.; Saharjo, B.H.; Ward, D.E. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. J. Geophys. Res. Atmos. 2003, 108, 13. [Google Scholar] [CrossRef]
- Martinsson, J.; Eriksson, A.C.; Nielsen, I.E.; Malmborg, V.B.; Ahlberg, E.; Andersen, C.; Lindgren, R.; Nystrom, R.; Nordin, E.Z.; Brune, W.H.; et al. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol. Environ. Sci. Technol. 2015, 49, 14663–14671. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1998; p. xiv, 530. [Google Scholar]
- Hopner, F.; Bender, F.A.M.; Ekman, A.M.L.; Andersson, A.; Gustafsson, O.; Leck, C. Investigation of Two Optical Methods for Aerosol-Type Classification Extended to a Northern Indian Ocean Site. J. Geophys. Res. Atmos. 2019, 124, 8743–8763. [Google Scholar] [CrossRef]
- Iinuma, Y.; Brueggemann, E.; Gnauk, T.; Mueller, K.; Andreae, M.O.; Helas, G.; Parmar, R.; Herrmann, H. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Yatavelli, R.L.; Chen, L.-W.A.; Knue, J.; Samburova, V.; Gyawali, M.; Watts, A.C.; Chakrabarty, R.K.; Moosmüller, H.; Hodzic, A.; Wang, X. Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol. Sci. Eng. 2017, 1, 25–32. [Google Scholar] [CrossRef] [Green Version]
Fuels | MCE |
---|---|
Cheatgrass | 0.96 ± 0.03 |
Dambo grass | 0.98 ± 0.00 |
Montana grass | 0.98 − 0.97 |
Prescribed fire grassland | 0.95 |
Savanna and grasslands | 0.94 ± 0.02 |
Cheatgrass | Value | Rice Straw | Value |
---|---|---|---|
AAE 405/532 nm | 2.2–9.5 | ||
AAE 405/781 nm | 2.0–6.9 | AAE 405/870 nm | 2.8 |
AAE 532/781 nm | 1.4–4.7 | AAE 532/870 nm | 2 |
SAE 405/532 nm | 0.5–3.5 | SAE 405/532 nm | 1.7–2.2 |
SAE 405/781 nm | 0.1–3.1 | ||
SAE 532/781 nm | 0.3–3.8 | ||
SSA 405 nm | 0.83 ± (0.02) | SSA 405 nm | 0.88 |
Fuels | EFCO2 (g/kg) | EFCO (g/kg) | EFPM (g/kg) |
---|---|---|---|
Cheatgrass (this paper) | 1593 ± 8 | 41 ± 7 | 18 ± 4 |
Prescribed grassland fire [51,52] | 1705 | 61 | - |
Dambo grass [7] | 1607 ± 10 | 20 ± 4 | 2.2 ± 1.1 |
Montana grass [7] | 1456 ± 15 | 25 ± 2 | 10 ± 1 |
Savanna and grassland fire [51,52] | 1660 ± 90 | 69 ± 20 | 9 ± 3 |
Group of Polar Compounds | Cheatgrass Present Study | Ponderosa Pine Needles Yatavelli et al. 2017 [57] | Eucalyptus Sengupta et al. 2020 [48] | Savanna GrassIinuma et al. 2007 [56] | |||
---|---|---|---|---|---|---|---|
Particle-Phase | Gas-Phase | Particle-Phase | Gas-Phase | Particle-Phase | Gas-Phase | Particle Phase | |
Alkanoic acids | 8.1 ± 2.0 | 4.2 ± 1.1 | 561 ± 25 | 183 ± 7 | 14.4 ± 3.6 | 0.85 ± 0.21 | |
Alkenoic acids | 2.3 ± 0.6 | 0.02 + 0.01 | 171 ± 14 | 0.08 ± 0.04 | 1.1 ± 0.3 | 0.03 ± 0.01 | |
Benzoic acid and substituted benzoic acids | 0.63 ± 0.16 | 2. 1 ± 0.5 | 4.3 ± 0.4 | 45.6 ± 2.3 | 0.21 ± 0.05 | 0.02 ± 0.01 | |
Alkanedioic acids | 26.2 ± 6.6 | 2.3 ± 0.6 | 55.3 ± 2.5 | 24.3 ± 1.3 | 0.86 ± 0.22 | 0.36 ± 0.09 | |
Aromatic dicarboxylic acids | 0.24 ± 0.06 | 0.12 ± 0.03 | 2.82 ± 0.19 | 1.65 ± 0.15 | 0.05 ± 0.01 | BDL | |
Anhydrous sugars | 98.3 ± 24.6 | 1.04 ± 0.26 | 1873 ± 104 | 11.9 ± 1.1 | 4.2 ± 1.1 | 0.03 ± 0.01 | 523 |
Methoxyphenols | 6.9 ± 1.7 | 51.7 ± 12.9 | 26.6 ± 1.4 | 817 ± 29 | 2.0 ± 0.5 | 3.3 ± 0.8 | |
Methoxy acids | 2.39 ± 0.60 | 0.12 ± 0.03 | 42.7 ± 2.9 | 1.1 ± 0.1 | 1.3 ± 0.3 | 0.45 ± 0.11 | |
Resin acids | 0.17 ± 0.04 | 0.012 ± 0.003 | 846 ± 67 | 0.70 ± 0.11 | 1.4 ± 0.4 | 0.012 ± 0.003 | |
Total (μg g−1) | 145 ± 36 | 62 ± 15 | 3583 ± 127 | 1085 ± 30 | 26 ± 6 | 5 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rennie, M.; Samburova, V.; Sengupta, D.; Bhattarai, C.; Arnott, W.P.; Khlystov, A.; Moosmüller, H. Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum). Atmosphere 2020, 11, 406. https://doi.org/10.3390/atmos11040406
Rennie M, Samburova V, Sengupta D, Bhattarai C, Arnott WP, Khlystov A, Moosmüller H. Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum). Atmosphere. 2020; 11(4):406. https://doi.org/10.3390/atmos11040406
Chicago/Turabian StyleRennie, Megan, Vera Samburova, Deep Sengupta, Chiranjivi Bhattarai, W. Patrick Arnott, Andrey Khlystov, and Hans Moosmüller. 2020. "Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum)" Atmosphere 11, no. 4: 406. https://doi.org/10.3390/atmos11040406
APA StyleRennie, M., Samburova, V., Sengupta, D., Bhattarai, C., Arnott, W. P., Khlystov, A., & Moosmüller, H. (2020). Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum). Atmosphere, 11(4), 406. https://doi.org/10.3390/atmos11040406