Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Configuration
2.2. Aerosol Optical Depth (AOD) Simulations in WRF-Chem
2.3. Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis
2.4. AErosol RObotic NETwork (AERONET)
2.5. Previous Validation Results
3. Results
3.1. AOD AERONET Evaluation
3.2. Biases and Improvement of the Absolute Errors in the Simulations Including Aerosol-Cloud Interactions
3.3. Correlation Coefficients and Their Improvements When Including Aerosol-Cloud Interactions
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACI | Aerosol-cloud interactions |
AOD | Aerosol optical depth |
AOD550 | Aerosol optical depth at 550 nm |
AOD675 | Aerosol optical depth at 675 nm |
AODTO | Total aerosol optical depth at 550 nm |
AODSU | Sulphate aerosol optical depth at 550 nm |
AODDU | Dust aerosol optical depth at 550 nm |
AODSS | Sea salt aerosol optical depth at 550 nm |
AODOM | Organic aerosol optical depth at 550 nm |
AODBC | Black carbon optical depth at 550 nm |
AQCI | Air quality-climate interactions |
ARI | Aerosol-radiation interactions |
CAMS | Copernicus Atmosphere Monitoring Service |
IE | Improvement of the error |
MAE | Mean average error |
MBE | Mean bias error |
r | Correlation coefficient |
References
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Guerrero, P.; Montávez, J.P.; Gómez-Navarro, J.J.; Jerez, S.; Lorente-Plazas, R. Impacts of climate change on ground level gas-phase pollutants and aerosols in the Iberian Peninsula for the late XXI century. Atmos. Environ. 2012, 55, 483–495. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Huszar, P.; Krüger, B.C.; Zanis, P.; Syrakov, D.; Katragkou, E.; Trapp, W.; Melas, D.; Chervenkov, H.; et al. Modelling the effects of climate change on air quality over Central and Eastern Europe: Concept, evaluation and projections. Clim. Res. 2012, 53, 179–203. [Google Scholar] [CrossRef] [Green Version]
- Kinney, P.L. Interactions of Climate Change, Air Pollution, and Human Health. Curr. Environ. Health Rep. 2018, 5, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Guerrero, P.; Gómez-Navarro, J.J.; Baró, R.; Lorente, R.; Ratola, N.; Montávez, J.P. Is there a common pattern of future gas-phase air pollution in Europe under diverse climate change scenarios? Clim. Chang. 2013, 121, 661–671. [Google Scholar] [CrossRef]
- Alapaty, K.; Mathur, R.; Pleim, J.; Hogrefe, C.; Rao, S.T.; Ramaswamy, V.; Galmarini, S.; Schaap, M.; Makar, P.; Vautard, R.; et al. New Directions: Understanding interactions of air quality and climate change at regional scales. Atmos. Environ. 2012, 49, 419–421. [Google Scholar] [CrossRef]
- Grell, G.; Baklanov, A. Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ. 2011, 45, 6845–6851. [Google Scholar] [CrossRef]
- Storelvmo, T.; Kristjansson, J.E.; Lohmann, U. Aerosol Influence on Mixed-Phase Clouds in CAM-Oslo. J. Atmos. Sci. 2008, 65, 3214–3230. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- Nabat, P.; Somot, S.; Mallet, M.; Sevault, F.; Chiacchio, M.; Wild, M. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim. Dyn. 2015, 44, 1127–1155. [Google Scholar] [CrossRef] [Green Version]
- Revell, L.E.; Stenke, A.; Luo, B.; Kremser, S.; Rozanov, E.; Sukhodolov, T.; Peter, T. Impacts of Mt Pinatubo volcanic aerosol on the tropical stratosphere in chemistry–climate model simulations using CCMI and CMIP6 stratospheric aerosol data. Atmos. Chem. Phys. 2017, 17, 13139–13150. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Peña, L.; Baró, R.; Baklanov, A.; Balzarini, A.; Brunner, D.; Forkel, R.; Hirtl, M.; Honzak, L.; López-Romero, J.M.; Montávez, J.P.; et al. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry–climate coupled models over Europe. Atmos. Chem. Phys. 2018, 18, 5021–5043. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.T.; Galmarini, S.; Puckett, K. Air Quality Model Evaluation International Initiative (AQMEII): Advancing the State of the Science in Regional Photochemical Modeling and Its Applications. Bull. Am. Meteorol. Soc. 2011, 92, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Solazzo, E.; Bianconi, R.; Pirovano, G.; Matthias, V.; Vautard, R.; Moran, M.D.; Appel, K.W.; Bessagnet, B.; Brandt, J.; Christensen, J.H.; et al. Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. Atmos. Environ. 2012, 53, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Baró, R.; Jiménez-Guerrero, P.; Balzarini, A.; Curci, G.; Forkel, R.; Grell, G.; Hirtl, M.; Honzak, L.; Langer, M.; Pérez, J.L.; et al. Sensitivity analysis of the microphysics scheme in WRF-Chem contributions to AQMEII phase 2. Atmos. Environ. 2015, 115, 620–629. [Google Scholar] [CrossRef]
- Forkel, R.; Balzarini, A.; Baró, R.; Bianconi, R.; Curci, G.; Jiménez-Guerrero, P.; Hirtl, M.; Honzak, L.; Lorenz, C.; Im, U.; et al. Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. Atmos. Environ. 2015, 115, 630–645. [Google Scholar] [CrossRef]
- Galmarini, S.; Koffi, B.; Solazzo, E.; Keating, T.; Hogrefe, C.; Schulz, M.; Benedictow, A.; Griesfeller, J.J.; Janssens-Maenhout, G.; Carmichael, G.; et al. Technical note: Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3, and MICS-Asia3: Simulations, emission inventories, boundary conditions, and model output formats. Atmos. Chem. Phys. 2017, 17, 1543–1555. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Peña, L.; Jiménez-Guerrero, P.; Baró, R.; Balzarini, A.; Bianconi, R.; Curci, G.; Landi, T.C.; Pirovano, G.; Prank, M.; Riccio, A.; et al. Aerosol optical properties over Europe: An evaluation of the AQMEII Phase 3 simulations against satellite observations. Atmos. Chem. Phys. 2019, 19, 2965–2990. [Google Scholar] [CrossRef] [Green Version]
- Baró, R.; Palacios-Peña, L.; Baklanov, A.; Balzarini, A.; Brunner, D.; Forkel, R.; Hirtl, M.; Honzak, L.; Pérez, J.L.; Pirovano, G.; et al. Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models. Atmos. Chem. Phys. 2017, 17, 9677–9696. [Google Scholar] [CrossRef] [Green Version]
- Baró, R.; Jiménez-Guerrero, P.; Stengel, M.; Brunner, D.; Curci, G.; Forkel, R.; Neal, L.; Palacios-Peña, L.; Savage, N.; Schaap, M.; et al. Evaluating cloud properties in an ensemble of regional online coupled models against satellite observations. Atmos. Chem. Phys. 2018, 18, 15183–15199. [Google Scholar] [CrossRef] [Green Version]
- Péré, J.C.; Bessagnet, B.; Mallet, M.; Waquet, F.; Chiapello, I.; Minvielle, F.; Pont, V.; Menut, L. Direct radiative effect of the Russian wildfires and its impact on air temperature and atmospheric dynamics during August 2010. Atmos. Chem. Phys. 2014, 14, 1999–2013. [Google Scholar] [CrossRef] [Green Version]
- Nabat, P.; Somot, S.; Mallet, M.; Michou, M.; Sevault, F.; Driouech, F.; Meloni, D.; di Sarra, A.; Di Biagio, C.; Formenti, P.; et al. Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol-atmosphere-ocean model over the Mediterranean. Atmos. Chem. Phys. 2015, 15, 3303–3326. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Forkel, R.; Sokhi, R.S.; Suppan, P.; Baklanov, A.; Gauss, M.; Brunner, D.; Barò, R.; Balzarini, A.; Chemel, C.; et al. Analysis of meteorology-chemistry interactions during air pollution episodes using online coupled models within AQMEII phase-2. Atmos. Environ. 2015, 115, 527–540. [Google Scholar] [CrossRef]
- Baró, R.; Lorente-Plazas, R.; Montávez, J.P.; Jiménez-Guerrero, P. Biomass burning aerosol impact on surface winds during the 2010 Russian heat wave. Geophys. Res. Lett. 2017, 44, 1088–1094. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Technical Report NCAR Tech. Note TN-475+STR; NCAR: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled -online- chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Hersbach, H.; Peubey, C.; Simmons, A.; Berrisford, P.; Poli, P.; Dee, D. ERA-20CM: A twentieth-century atmospheric model ensemble. Q. J. R. Meteorol. Soc. 2015, 141, 2350–2375. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Jerez, S.; López-Romero, J.; Turco, M.; Jiménez-Guerrero, P.; Vautard, R.; Montávez, J. Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments. Nat. Commun. 2018, 9, 1304. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather. Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Guerrero, P.; Jerez, S.; Montávez, J.P.; Trigo, R.M. Uncertainties in future ozone and PM10 projections over Europe from a regional climate multiphysics ensemble. Geophys. Res. Lett. 2013, 40, 5764–5769. [Google Scholar] [CrossRef]
- Tarín-Carrasco, P.; Morales-Suárez-Varela, M.; Im, U.; Brandt, J.; Palacios-Peña, L.; Jiménez-Guerrero, P. Isolating the climate change impacts on air-pollution-related-pathologies over central and southern Europe—A modelling approach on cases and costs. Atmos. Chem. Phys. 2019, 19, 9385–9398. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Meleux, F. Modelling the regional effects of climate change on air quality. C. R. Geosci. 2007, 339, 721–733. [Google Scholar] [CrossRef]
- Goudie, A.; Middleton, N. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Middleton, N.J.; Goudie, A.S. Saharan dust: Sources and trajectories. Trans. Inst. Br. Geogr. 2001, 26, 165–181. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer Science & Business Media: London, UK, 2006; p. 288. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Ahmadov, R.; McKeen, S.A.; Robinson, A.L.; Bahreini, R.; Middlebrook, A.M.; de Gouw, J.A.; Meagher, J.; Hsie, E.Y.; Edgerton, E.; Shaw, S.; et al. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. Atmos. 1994, 99, 1347–1370. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, P.; Jorba, O.; Pay, M.T.; Montávez, J.P.; Jerez, S.; Gómez-Navarro, J.J.; Baldasano, J.M. Comparison of two different sea-salt aerosol schemes as implemented in air quality models applied to the Mediterranean Basin. Atmos. Chem. Phys. 2011, 11, 4833–4850. [Google Scholar] [CrossRef] [Green Version]
- Basart, S.; Pay Pérez, M.T.; Jorba Casellas, O.; Pérez García-Pando, C.; Jiménez Guerrero, P.; Schulz, M.; Baldasano Recio, J.M. Aerosols in the CALIOPE air quality modelling system: Evaluation and analysis of PM levels, optical depths and chemical composition over Europe. Atmos. Chem. Phys. 2012, 12, 3363–3392. [Google Scholar] [CrossRef] [Green Version]
- Chapman, E.G.; Gustafson, W.I., Jr.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, S.A.; Hobbs, P.V. The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands. J. Atmos. Sci. 1984, 41, 2949–2972. [Google Scholar] [CrossRef]
- Tao, W.K.; Simpson, J.; McCumber, M. An Ice-Water Saturation Adjustment. Mon. Weather. Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.L.; Rasch, P.; Ivanova, D.; McFarquhar, G.; Nousiainen, T. Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett. 2008, 35, L09806. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Zhang, R. Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res. Atmos. 2008, 113, D15211. [Google Scholar] [CrossRef]
- Ghan, S.J.; Leung, L.R.; Easter, R.C.; Abdul-Razzak, H. Prediction of cloud droplet number in a general circulation model. J. Geophys. Res. Atmos. 1997, 102, 21777–21794. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Daum, P.H.; McGraw, R.L. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett. 2005, 32, L11811. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Huijnen, V.; Pozzer, A.; Arteta, J.; Brasseur, G.; Bouarar, I.; Chabrillat, S.; Christophe, Y.; Doumbia, T.; Flemming, J.; Guth, J.; et al. Quantifying uncertainties due to chemistry modelling—Evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). Geosci. Model Dev. 2019, 12, 1725–1752. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Wyant, M.C.; Bretherton, C.S.; Wood, R.; Carmichael, G.R.; Clarke, A.; Fast, J.; George, R.; Gustafson, W.I., Jr.; Hannay, C.; Lauer, A.; et al. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: The VOCA intercomparison. Atmos. Chem. Phys. 2015, 15, 153–172. [Google Scholar] [CrossRef] [Green Version]
- Stengel, M.; Stapelberg, S.; Sus, O.; Schlundt, C.; Poulsen, C.; Thomas, G.; Christensen, M.; Carbajal Henken, C.; Preusker, R.; Fischer, J.; et al. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project. Earth Syst. Sci. Data 2017, 9, 881–904. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Webb, L.; Watterson, I.; Bhend, J.; Whetton, P.; Barlow, E. Global climate analogues for winegrowing regions in future periods: Projections of temperature and precipitation. Aust. J. Grape Wine Res. 2013, 19, 331–341. [Google Scholar] [CrossRef]
- Schaap, M.; Timmermans, R.; Koelemeijer, R.; de Leeuw, G.; Builtjes, P. Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ. 2008, 42, 2187–2197. [Google Scholar] [CrossRef]
- Querol, X.; Pey, J.; Pandolfi, M.; Alastuey, A.; Cusack, M.; Pérez, N.; Moreno, T.; Viana, M.; Mihalopoulos, N.; Kallos, G.; et al. African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos. Environ. 2009, 43, 4266–4277. [Google Scholar] [CrossRef]
- Palacios-Peña, L.; Baró, R.; Guerrero-Rascado, J.L.; Alados-Arboledas, L.; Brunner, D.; Jiménez-Guerrero, P. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula. Atmos. Chem. Phys. 2017, 17, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A.K.; Astitha, M. AOD trends during 2001–2010 from observations and model simulations. Atmos. Chem. Phys. 2015, 15, 5521–5535. [Google Scholar] [CrossRef] [Green Version]
- Matthias, V. The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: Comparison to near surface in situ and sunphotometer measurements. Atmos. Chem. Phys. 2008, 8, 5077–5097. [Google Scholar] [CrossRef] [Green Version]
- Pay, M.T.; Jiménez-Guerrero, P.; Baldasano, J.M. Assessing sensitivity regimes of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system. Atmos. Environ. 2012, 51, 146–164. [Google Scholar] [CrossRef] [Green Version]
- Prijith, S.; Aloysius, M.; Mohan, M. Relationship between wind speed and sea salt aerosol production: A new approach. J. Atmos. Sol. Terr. Phys. 2014, 108, 34–40. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Xie, M.; Han, Y.; Zhuang, B. Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China. Atmos. Environ. 2015, 123, 350–356. [Google Scholar] [CrossRef]
- Wang, K.; Yahya, K.; Zhang, Y.; Hogrefe, C.; Pouliot, G.; Knote, C.; Hodzic, A.; Jose, R.S.; Perez, J.L.; Jiménez-Guerrero, P.; et al. A multi-model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of column variable predictions using satellite data. Atmos. Environ. 2015, 115, 587–603. [Google Scholar] [CrossRef]
- Lapina, K.; Heald, C.L.; Spracklen, D.V.; Arnold, S.R.; Allan, J.D.; Coe, H.; McFiggans, G.; Zorn, S.R.; Drewnick, F.; Bates, T.S.; et al. Investigating organic aerosol loading in the remote marine environment. Atmos. Chem. Phys. 2011, 11, 8847–8860. [Google Scholar] [CrossRef] [Green Version]
- Balzarini, A.; Pirovano, G.; Honzak, L.; Žabkar, R.; Curci, G.; Forkel, R.; Hirtl, M.; José, R.S.; Tuccella, P.; Grell, G. WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties. Atmos. Environ. 2015, 115, 604–619. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Ozsoy, E. Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res. Atmos. 2006, 111, D16. [Google Scholar] [CrossRef] [Green Version]
- Pérez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Huneeus, N.; Baldasano, J.M.; Black, T.; Basart, S.; Nickovic, S.; Miller, R.L.; et al. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model—Part 1: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 2011, 11, 13001–13027. [Google Scholar] [CrossRef] [Green Version]
Longitude | Latitude | N. | Name | Longitude | Latitude | N. | Name |
---|---|---|---|---|---|---|---|
4.82 | 43.58 | 1 | La_Crau | 3.14 | 50.61 | 2 | Lille |
2.11 | 41.39 | 3 | Barcelona | 12.51 | 45.31 | 4 | Venise |
24.92 | 41.15 | 5 | Xanthi | 8.63 | 45.80 | 6 | Ispra |
8.30 | 50.00 | 7 | Mainz | 15.72 | 40.60 | 8 | IMAA_Potenza |
7.89 | 54.18 | 9 | Helgoland | 2.44 | 48.79 | 10 | Creteil |
18.95 | 57.92 | 11 | Gotland | 2.21 | 48.71 | 12 | Palaiseau |
2.36 | 48.85 | 13 | Paris | 1.48 | 43.56 | 14 | Toulouse |
28.82 | 47.00 | 15 | Moldova | 15.49 | 42.12 | 16 | Tremiti |
4.88 | 43.93 | 17 | Avignon | −6.73 | 37.10 | 18 | El_Arenosillo |
30.50 | 50.36 | 19 | Kyiv | 8.50 | 39.91 | 20 | IMC_Oristano |
9.97 | 53.57 | 21 | Hamburg | 10.95 | 44.63 | 22 | Modena |
12.63 | 35.52 | 23 | Lampedusa | 27.60 | 53.92 | 24 | Minsk |
12.65 | 41.84 | 25 | Rome_Tor_Vergata | 12.44 | 51.35 | 26 | Leipzig |
−0.58 | 44.79 | 27 | Bordeaux | 2.92 | 51.23 | 28 | Oostende |
9.84 | 46.81 | 29 | Davos | 0.08 | 43.25 | 30 | Tarbes |
0.14 | 42.94 | 31 | Pic_du_Midi | 4.33 | 52.11 | 32 | The_Hague |
11.57 | 48.15 | 33 | Munich_University | 18.11 | 40.34 | 34 | Lecce_University |
−0.13 | 51.52 | 35 | London-UCL-UAO | 23.72 | 37.97 | 36 | Athens-NOA |
12.33 | 45.44 | 37 | ISDGM_CNR | 2.68 | 48.41 | 38 | Fontainebleau |
11.26 | 48.21 | 39 | Munich_Maisach | 20.79 | 51.84 | 40 | Belsk |
26.47 | 58.26 | 41 | Toravere | 25.28 | 35.33 | 42 | Forth_Crete |
−3.46 | 48.73 | 43 | Lannion | 5.06 | 44.08 | 44 | Carpentras |
7.62 | 48.34 | 45 | Rossfeld | 4.93 | 51.97 | 46 | Cabauw |
2.37 | 51.04 | 47 | Dunkerque | 15.02 | 37.61 | 48 | Etna |
2.88 | 36.51 | 49 | Blida | 15.57 | 38.20 | 50 | Messina |
22.96 | 40.63 | 51 | Thessaloniki | −3.60 | 37.16 | 52 | Granada |
12.38 | 45.43 | 53 | Nicelli_Airport | 8.43 | 49.09 | 53 | Karlsruhe * |
5.71 | 43.94 | 55 | OHP_Observatoire | −6.34 | 39.48 | 56 | Caceres |
−1.44 | 51.14 | 57 | Chilbolton | 4.35 | 50.78 | 58 | Brussels |
22.98 | 40.38 | 59 | Epanomi | 6.16 | 43.00 | 60 | Porquerolles |
−0.42 | 39.51 | 61 | Burjassot | −3.39 | 37.06 | 62 | Dilar |
26.03 | 44.35 | 63 | Bucharest_Inoe | 7.54 | 48.44 | 64 | Obernai |
8.40 | 48.54 | 65 | Black_Forest_AMF | −4.60 | 42.00 | 66 | Autilla |
−1.12 | 52.62 | 67 | Leicester | 1.28 | 43.38 | 68 | Le_Fauga |
5.94 | 43.07 | 69 | Saint_Mandrier | 13.90 | 46.68 | 70 | Kanzelhohe_Obs |
−4.71 | 41.66 | 71 | Valladolid_Sci | 9.36 | 43.00 | 72 | Ersa |
26.08 | 44.51 | 73 | Baneasa | −1.16 | 44.66 | 74 | Arcachon |
−1.33 | 51.77 | 75 | Wytham_Woods | −4.48 | 36.72 | 76 | Malaga |
1.26 | 43.50 | 77 | Seysses | 8.25 | 58.39 | 78 | Birkenes |
28.63 | 44.08 | 79 | Eforie | 8.88 | 54.13 | 80 | Buesum |
−6.57 | 37.02 | 81 | Huelva | 3.11 | 45.76 | 82 | Aubiere_LAMP |
5.29 | 43.27 | 83 | Frioul | 23.55 | 46.77 | 84 | Cluj_UBB |
29.36 | 44.60 | 85 | Gloria | 16.88 | 41.11 | 86 | Bari_University |
−1.90 | 34.65 | 87 | Oujda |
AOD CAMS rean. × 10 | Bias ARI × 10 | IE × 10 (unitless and %) | |
---|---|---|---|
Total AOD at 550 nm | 207.21 | −7.61 | 0.58 (7.62%) |
Sulphate AOD at 550 nm | 49.81 | −0.64 | 0.09 (14.06%) |
Dust AOD at 550 nm | 23.29 | 0.25 | 0.05 (20.22%) |
Sea Salt AOD at 550 nm | 25.29 | −4.79 | 0.10 (2.09%) |
Organic Matter AOD at 550 nm | 58.23 | 3.21 | 0.11 (3.42%) |
Black Carbon AOD at 550 nm | 6.59 | −1.89 | 0.04 (2.11%) |
Correlation ARI | Improv. (unitless and %) | |
---|---|---|
Total AOD at 550 nm | 0.701 | 0.055 (7.86%) |
Sulphate AOD at 550 nm | 0.725 | 0.048 (6.62%) |
Dust AOD at 550 nm | 0.506 | 0.100 (19.77%) |
Sea Salt AOD at 550 nm | 0.771 | 0.068 (8.82%) |
Organic Matter AOD at 550 nm | 0.495 | 0.044 (8.89%) |
Black Carbon AOD at 550 nm | 0.736 | 0.042 (5.71%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios-Peña, L.; Montávez, J.P.; López-Romero, J.M.; Jerez, S.; Gómez-Navarro, J.J.; Lorente-Plazas, R.; Ruiz, J.; Jiménez-Guerrero, P. Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe. Atmosphere 2020, 11, 360. https://doi.org/10.3390/atmos11040360
Palacios-Peña L, Montávez JP, López-Romero JM, Jerez S, Gómez-Navarro JJ, Lorente-Plazas R, Ruiz J, Jiménez-Guerrero P. Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe. Atmosphere. 2020; 11(4):360. https://doi.org/10.3390/atmos11040360
Chicago/Turabian StylePalacios-Peña, Laura, Juan P. Montávez, José M. López-Romero, Sonia Jerez, Juan J. Gómez-Navarro, Raquel Lorente-Plazas, Jesús Ruiz, and Pedro Jiménez-Guerrero. 2020. "Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe" Atmosphere 11, no. 4: 360. https://doi.org/10.3390/atmos11040360
APA StylePalacios-Peña, L., Montávez, J. P., López-Romero, J. M., Jerez, S., Gómez-Navarro, J. J., Lorente-Plazas, R., Ruiz, J., & Jiménez-Guerrero, P. (2020). Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe. Atmosphere, 11(4), 360. https://doi.org/10.3390/atmos11040360